
Warming Up a Cold Front-End with Ignite

David Schall, Andreas Sandberg, Boris Grot

October 30, 2023

2

Rapidly emerging cloud execution model

▪ More than 50% of all cloud customers of AWS, Google Cloud

and Azure use serverless [Datadog 2023]

Applications are organized as a graph of tiny stateless functions

▪ Functions run only on-demand

▪ Invoked via trigger event

▪ Functions are stateless

▪ Facilitates rapid and on-demand scaling down to zero

▪ Developer: pay per invocation (CPU+memory), not idle time

▪ Cloud providers: high density and resource utilization

Serverless

<f2>

<f4>

<f7>

<f5>

<f6>

<f9>

<f1>

<f3>

<f8>

<f4><f4>

<f7>

<f5>

Serverless is a hot topic for research!
MICRO’23: Warming Up a Cold Front-End with Ignite

3

Serverless sharply contrasts with conventional workloads

▪ Conventional:

▪ Large VMs constantly occupy server resources

▪ Serverless:

▪ Short function execution times: a few ms or less

▪ Small memory footprint: tens of MB

▪ Sporadically invoked (seconds or minutes)
[Microsoft Azure @ATC20]

Implications:

▪ Extreme multi-tenancy:

Thousands of functions resident on a server

▪ Huge degree of interleaving between two

invocations of the same function

Serverless Characteristics on a Server

Microarchitecture is not designed for serverless!

MICRO’23: Warming Up a Cold Front-End with Ignite

Memory

Core 0 Core n

App 1 App 2

…

Memory

Core 0 Core n

Conventional workloads

on a server

Serverless workloads

on a server

f f f ff f f f f f f f f f f f

…

f

Execution timeline of one CPU core

fff f fffff ffff fffff ffff

Inter-arrival time

4

Prior work found [Lukewarm Serverless Functions @ISCA’22]:

• Huge degree of function interleaving causes severe performance

degradation.

• Lukewarm execution:

▪ Functions reside warmly in memory

▪ On-chip microarchitectural state is cold for every invocation

▪ Thrashed by other interleaved executed functions

Serverless on a Cloud Server

MICRO’23: Warming Up a Cold Front-End with Ignite

Memory

Core 0 Core n

Serverless workloads

on a server

f f f ff f f f f f f f f f f f

…

5

Use Top-down Analysis to study 20 serverless functions

▪ Intel Ice Lake Server CPU

▪ 32 cores, two socket, SMT disabled, 32KB L1I, 48KB L1D,

1.25MB L2/core, 54MB LLC

▪ Workloads:

▪ 20 diverse serverless functions from vSwarm

▪ … on 3 different runtimes: Python, Golang, NodeJS

▪ … in 3 main types of programming languages: compiled,

interpreted, JIT’ed

▪ Compare back-to-back to interleaved execution

▪ Back-to-back: Core repeatedly processes the same function

▪ Interleaved: After each invocation of the function, a stressor

is used to thrash the on-chip uarch state

Understanding Lukewarm Execution

MICRO’23: Warming Up a Cold Front-End with Ignite

6

Interleaving drastically increases CPI by 100-294%

▪ If the microarchitecture is warm, performance is high

▪ Caches and the branch predictor leverage high commonality across invocations to boost performance

▪ The problem is the cold microarchitecture due to interleaving

Lukewarm Executions Challenge Modern CPUs

Top-Down Analysis on Intel Ice Lake

MICRO’23: Warming Up a Cold Front-End with Ignite

7

Stall cycles in front-end (FE) bound categories dominate:

▪ FE: Fetch Bound (I-cache, I-TLB) + Bad Speculation (BTB + branch predictor)

▪ FE bound stalls collectively increase by 130-490% (215% on average) due to interleaving

Lukewarm Executions Challenge Modern CPUs

Does prior work help with the cold front-end?

Front-End

Bound

Top-Down Analysis on Intel Ice Lake

Interleaved

execution

Back-to-back

execution

MICRO’23: Warming Up a Cold Front-End with Ignite

8

Full system simulation of a two-node setup in gem5:

▪ Detailed dual-core Ice Lake-like CPU model

▪ 2.4 GHz, 352 entry ROB, 5-way decode

▪ Caches: L1-I/D: 32/48KB, : L2:1.25MB/core, L3: 8MB

▪ BPU: 64kB LTAGE, 12k entry BTB (After Sapphire Rapids)

▪ Secondary node for driving invocations

Exact same software stack as on real hardware

▪ Full end-to-end simulations

Extend gem5 by an industry-standard front-end design

▪ Fetch directed prefetch (FDP)
▪ Employed in IBM’s z14/z15, Arm’s Neoverse, Samsung's Exynos

▪ Released and in the process of upstreaming to gem5

▪ https://github.com/dhschall/gem5-fdp/

Simulation Infrastructure

Detailed nodeDriving

node

Core

Core Core

NIC

NIC

Ethernet

L2-$

D-$I-$

L2-$

D-$I-$

Memory

Subsystem

Memory

L3-$

client

f

MICRO’23: Warming Up a Cold Front-End with Ignite

https://github.com/dhschall/gem5-fdp/

9

Baseline: Ice Lake-like CPU model with Next-line instruction prefetcher

Evaluate three different designs:

1. Jukebox: Prior work on lukewarm execution

▪ Focus on off-chip instruction misses

▪ Record-and-Replay instruction prefetcher

▪ Targets L2 cache

2. Boomerang: FDP + BTB prefilling

▪ FDP-based instruction prefetching

▪ Targets L1 instruction cache

▪ + proactive branch target pre-decoding

3. Ideal: Warm front-end

▪ Perfect L1-I and BTB

▪ Pre-trained conditional branch predictor

Prior Art in Front-end Mitigation

Ice Lake CPU model

Fetch

L2-$

I-$

Memory

Jukebox

BPU

BTBFTQ

Boomerang

MICRO’23: Warming Up a Cold Front-End with Ignite

10

Prior works fail to address lukewarm executions
▪ Jukebox mitigates only off-chip instruction misses

▪ Jukebox + Boomerang is also ineffective. Why?

Reason:

▪ Cold microarchitectural state of the

Branch Predictor Unit (BPU)
▪ Short execution times of serverless functions impede

BPU training

▪ High BTB + CBP MPKI (> 30 MPKI!)

Prior Art in Front-end Mitigation

Why is a warm BPU so important?

MICRO’23: Warming Up a Cold Front-End with Ignite

11

Front-end cannot stay on the correct path

▪ Boomerang prefetches instructions and branches from the wrong path

 → Poor miss coverage

▪ Boomerang has no notion of whether a branch is taken or not

 → BTB prefetching is ineffective or even counterproductive

Branch mispredictions are resolved late in the pipeline

→ Pipeline flush

Effect of the Cold Branch Predictor

The cold BPU limits the efficacy of prior work

MICRO’23: Warming Up a Cold Front-End with Ignite

FE
BPU

BTB DE EX…

BTB miss

Branch misprediction

12

Objectives to address the problem of a cold front-end:

1. Instructions on-chip

▪ To shield the CPU from long instruction miss latencies

2. Warm BTB

▪ To allow the front-end detecting control flow

3. Warm Branch Predictor

▪ To stay on the correct path and avoid pipeline flushes

Question:

Can we get it all with a practical, non-invasive design?

Addressing the Cold Front-end

MICRO’23: Warming Up a Cold Front-End with Ignite

13

Observations:

1. High commonality across invocations

▪ Most instructions and branch executions are the same across invocations

▪ → We can record and replay control flow

2. The BTB working set is a compressed version of a program’s control flow

▪ Contains all control flow discontinuities

▪ → Can be used for instruction and BTB prefetching

3. Significant fraction of compulsory branch mispredictions

▪ Large instruction footprint + short execution time → code gets streamed

▪ Too few dynamic executions per branch to amortize compulsory miss

▪ → We can focus on compulsory misprediction

Addressing the Cold Front-end

MICRO’23: Warming Up a Cold Front-End with Ignite

14

Observations:

1. High commonality across invocations

Addressing the Cold Front-end

MICRO’23: Warming Up a Cold Front-End with Ignite

2. The BTB working set is a compressed version of a program’s control flow

➔BTB working set can be used to replay the entire control flow!

What about the cold branch predictor?

 Insight:

▪ A BTB insertion happens only upon a compulsory misprediction
▪ A branch is taken the first time

→ Not present in BTB → gets installed

➔Replay BTB insertions to restore instruction, branch targets, and branch directions

Objectives:

❑ Instructions on-chip

❑ Warm BTB

❑ Warm Branch Predictor

15

IGNITE

MICRO’23: Warming Up a Cold Front-End with Ignite

CPU Core

Memory

Record

Logic

BPU
BTB

insert

▪ Records complete and non-redundant control

flow graph of one invocation

▪ Monitors only BTB insertions

▪ Stores trace of BTB insertions as metadata in

memory

Comprehensive solution for restoring front-end microarchitectural state

TAGE

Metadata

L2-$

BTB BIM
MMU I-$

CPU Core
BPU

16

IGNITE

Simple, non-invasive design with unified metadata

MICRO’23: Warming Up a Cold Front-End with Ignite

L2-$

BTB

Replay

Logic

BIM
MMU

▪ Replays u-arch state upon next invocation of the

same function

▪ Single, unified metadata is used to:

1. Restore BTB entries

2. Initializes the Bimodal predictor

3. Prefetch instructions on-chip into L2
▪ Populates the I-TLB as a by-product

▪ Integrates with FDP

▪ The warmed-up BPU effectively prefetches

instructions into L1

▪ Fully decoupled from the core

▪ Triggered by function invocation

Comprehensive solution for restoring front-end microarchitectural state

BTB

insert TAGE

{PC,target}{PC,taken}

I-$

{PC}

Memory
Metadata

17

Ignites comprehensive state restoration

▪ Covers > 80% BTB misses and > 50% L1I misses

▪ Reduces branch mispredictions by > 60%

 → This translates to a 43% speedup over next-line

▪ Captures the bulk of the opportunity at low design complexity

IGNITE: Performance

Ignite is a simple and effective

MICRO’23: Warming Up a Cold Front-End with Ignite

18

Serverless functions present new challenges for modern CPUs

▪ Lukewarm execution: cold u-arch state due to heavy function interleaving

Analysis shows severe front-end bottlenecks due to lukewarm execution

▪ L1 instruction misses, BTB misses and branch mispredictions

▪ Cold Branch Predictor Unit limits the efficacy of prior work

▪ A solution for cold front-end must comprise:

▪ instructions, branch targets and branch directions

Ignite: Comprehensive microarchitectural state restoration for the CPU front-end

▪ Single, unified metadata for instructions, branch targets and branch directions

▪ Simple and effective solution for the cold front-end

▪ Speeds up interleaved serverless function executions by 43%

Takeaways

MICRO’23: Warming Up a Cold Front-End with Ignite

19

Thank you!

Extensive characterization

Design details

Sensitivity studies

FDP Implementation in gem5

https://github.com/dhschall/gem5-fdp/

Serverless workloads (vSwarm)

gem5 infrastructure (vSwarm-u):

https://github.com/vhive-serverless

https://github.com/dhschall/gem5-fdp/
https://github.com/vhive-serverless

	Main Presentation
	Slide 1: Warming Up a Cold Front-End with Ignite
	Slide 2: Serverless
	Slide 3: Serverless Characteristics on a Server
	Slide 4: Serverless on a Cloud Server
	Slide 5: Understanding Lukewarm Execution
	Slide 6: Lukewarm Executions Challenge Modern CPUs
	Slide 7: Lukewarm Executions Challenge Modern CPUs
	Slide 8: Simulation Infrastructure
	Slide 9: Prior Art in Front-end Mitigation
	Slide 10: Prior Art in Front-end Mitigation
	Slide 11: Effect of the Cold Branch Predictor
	Slide 12: Addressing the Cold Front-end
	Slide 13: Addressing the Cold Front-end
	Slide 14: Addressing the Cold Front-end
	Slide 15: IGNITE
	Slide 16: IGNITE
	Slide 17: IGNITE: Performance
	Slide 18: Takeaways
	Slide 19

