Warming Up a Cold Front-End with Ignite

David Schall, Andreas Sandberg, Boris Grot

October 30, 2023

Serverless

Rapidly emerging cloud execution model

= More than 50% of all cloud customers of AWS, Google Cloud
and Azure use serverless [Datadog 2023]

Applications are organized as a graph of tiny stateless functions

= Functions run only on-demand
" |nvoked via trigger event o

= Functions are stateless
= Facilitates rapid and on-demand scaling down to zero

= Developer: pay per invocation (CPU+memory), not idle time

= Cloud providers: high density and resource utilization

Serverless is a hot topic for research!

MICRO’23: Warming Up a Cold Front-End with Ignite

THE UNIVERSITY of EDINBURGH

Serverless Characteristics on a Server - informatics
Serverless sharply contrasts with conventional workloads
= Conventional:
= Large VMs constantly occupy server resources Conventional workloads Serverless workloads
= Serverless: on a server on a server
= Short function execution times: a few ms or less Core 0 | | Coren Core 0 | ... Coren
= Small memory footprint: tens of MB

= Sporadically invoked (seconds or minutes) - pp 2
[Microsoft Azure @ATC20] Memory
Implications:

= Extreme multi-tenancy:
Thousands of functions resident on a server

Inter-arrlval time

Executlon tlmellne of one CPU core

= Huge degree of interleaving between two
invocations of the same function

Microarchitecture is not designed for serverless!

MICRO’23: Warming Up a Cold Front-End with Ignite 3

Serverless on a Cloud Server

Prior work found [Lukewarm Serverless Functions @ISCA’22]:

* Huge degree of function interleaving causes severe performance

degradation.
Serverless workloads

e Lukewarm execution: on a server

* Functions reside warmly in memory
Core0 |...| Coren

= On-chip microarchitectural state is cold for every invocation

* Thrashed by other interleaved executed functions IIHIIIHEHIIHIHI'

Memory

MICRO’23: Warming Up a Cold Front-End with Ignite

M@) THE UNIVERSITY of EDINBURGH

Understanding Lukewarm Execution &y informatics

Use Top-down Analysis to study 20 serverless functions

= |Intel Ice Lake Server CPU
= 32 cores, two socket, SMT disabled, 32KB L1l, 48KB L1D,
1.25MB L2/core, 54MB LLC

Back-to-Back Execution
= Workloads:

@ | I l | l l |Function executing|
= 20 diverse serverless functions from vSwarm

CPU core execution timeline

= ... on 3 different runtimes: Python, Golang, Node)S

= ... in 3 main types of programming languages: compiled,

interpreted, |IT ed
Interleaved Execution

= Compare back-to-back to interleaved execution

| Function executing |
= Back-to-back: Core repeatedly processes the same function l l l Stressor models
= Interleaved: After each invocation of the function, a stressor "1 focated functions
is used to thrash the on-chip uarch state CPU core execution dmeline

MICRO’23: Warming Up a Cold Front-End with Ignite 5

> THE UNIVERSITY of EDINBURGH

Lukewarm Executions Challenge Modern CPUs & informatics

Top-Down Analysis on Intel Ice Lake
Back-to-Back T Interleaved

5.0
4.0
= 3.0
Y20
1.0 7 2 - 7 % 7
WA A O | A A\)| A7 7| 7

Interleaving drastically increases CPIl by 100-294%

= If the microarchitecture is warm, performance is high

= Caches and the branch predictor leverage high commonality across invocations to boost performance
= The problem is the cold microarchitecture due to interleaving

MICRO’23: Warming Up a Cold Front-End with Ignite 6

ol LV [_-/? :
“@)> THE UNIVERSITY of EDINBURGH

Lukewarm Executions Challenge Modern CPUs ‘& informatics

Top-Down Analysis on Intel Ice Lake
[Retiring 1 Fetch Bound 1 Bad Speculation I Backend Bound

5.0
4.0
= 3.0
E') 2.0 / Front-End
. Bound

1.0
0.0

Interleaved
execution

Back-to-back
execution

Stall cycles in front-end (FE) bound categories dominate:

= FE: Fetch Bound (I-cache, I-TLB) + Bad Speculation (BTB + branch predictor)
= FE bound stalls collectively increase by 130-490% (215% on average) due to interleaving

Does prior work help with the cold front-end?

MICRO’23: Warming Up a Cold Front-End with Ignite 7

Simulation Infrastructure

Full system simulation of a two-node setup in gem5:

= Detailed dual-core Ice Lake-like CPU model
= 2.4 GHz, 352 entry ROB, 5-way decode
= Caches: L1-1/D: 32/48KB, : L2:1.25MB/core, L3: 8MB
= BPU: 64kB LTAGE, 12k entry BTB (After Sapphire Rapids)

= Secondary node for driving invocations

Exact same software stack as on real hardware

» Full end-to-end simulations

Extend gem5 by an industry-standard front-end design
= Fetch directed prefetch (FDP)

= Employed in IBM’s z14/z15, Arm’s Neoverse, Samsung's Exynos

= Released and in the process of upstreaming to gem5
" https://github.com/dhschall/gem5-fdp/

MICRO’23: Warming Up a Cold Front-End with Ignite

M@) THE UNIVERSITY of EDINBURGH

&) informatics

Driving Detailed node

node
client <

[1-$ | [D-$| [I-$] [D-$|
Memory @ @ @ @
Subsystem | L2-$ | | L2-$

g

NIC

https://github.com/dhschall/gem5-fdp/

Prior Art in Front-end Mitigation

BV @) THE UNIVERSITY of EDINBURGH

&) informatics

Baseline: Ice Lake-like CPU model with Next-line instruction prefetcher

Evaluate three different designs:

1. Jukebox: Prior work on lukewarm execution

* Focus on off-chip instruction misses

= Record-and-Replay instruction prefetcher

= Targets L2 cache

2. Boomerang: FDP + BTB prefilling

= FDP-based instruction prefetching
= Targets L1 instruction cache
= + proactive branch target pre-decoding

3. Ideal: Warm front-end

* Perfect L1-1 and BTB
" Pre-trained conditional branch predictor

MICRO’23: Warming Up a Cold Front-End with Ignite

Ice Lake CPU model
BPU
gFTO> Fetch

e

T o

A
=
el

Boomerang

A

Jukebox

A

Memory

q
\". THE UNIVERSITY of EDINBURGH

Prior Art in Front-end Mitigation & informatics
Prior works fail to address lukewarm executions

= Jukebox mitigates only off-chip instruction misses 1.6+

= Jukebox + Boomerang is also ineffective. Why? o

35 1.4

Reason: 3

= Cold microarchitectural state of the & 1.2 -

Branch Predictor Unit (BPU)
= Short execution times of serverless functions impede
BPU training 1.0 === —

= High BTB + CBP MPKI (> 30 MPKI!)

INL

[TJukebox

B Boomerang + |B
[ideal

Why is a warm BPU so important?

MICRO’23: Warming Up a Cold Front-End with Ignite 10

ol LV £ p :
(& @)\ THE UNIVERSITY of EDINBURGH

- informatics

Eftect of the Cold Branch Predictor

Front-end cannot stay on the correct path

* Boomerang prefetches instructions and branches from the wrong path
—> Poor miss coverage

* Boomerang has no notion of whether a branch is taken or not
- BTB prefetching is ineffective or even counterproductive

Branch mispredictions are resolved late in the pipeline

> Pipeline flush Branch misprediction
: BTB miss

S a

|
BTB] FE > DE = EX o

The cold BPU limits the efficacy of prior work

MICRO’23: Warming Up a Cold Front-End with Ignite 11

q
\". THE UNIVERSITY of EDINBURGH

Addressing the Cold Front-end &y informatics

Objectives to address the problem of a cold front-end:

1. Instructions on-chip

= To shield the CPU from long instruction miss latencies

2. Warm BTB

= To allow the front-end detecting control flow

3. Warm Branch Predictor

= To stay on the correct path and avoid pipeline flushes

Question:

Can we get it all with a practical, non-invasive design?

MICRO’23: Warming Up a Cold Front-End with Ignite 12

oS)
o N \". THE UNIVERSITY of EDINBURGH

Addressing the Cold Front-end &y informatics

Observations:

1. High commonality across invocations
= Most instructions and branch executions are the same across invocations

= - We can record and replay control flow

2. The BTB working set is a compressed version of a program’s control flow
= Contains all control flow discontinuities

= > Can be used for instruction and BTB prefetching

3. Significant fraction of compulsory branch mispredictions
= Large instruction footprint + short execution time = code gets streamed
* Too few dynamic executions per branch to amortize compulsory miss

= = We can focus on compulsory misprediction

MICRO’23: Warming Up a Cold Front-End with Ignite 13

Addressing the Cold Front-end

Observations:

1. High commonality across invocations

&) informatics

=>» BTB working set can be used to replay the entire control flow!
2. The BTB working set is a compressed version of a program’s (

What about the cold branch predictor?

Obijectives:
o Instructions on-chip
@ Warm BTB

Warm Branch Predictor

Insight:

= A BTB insertion happens only upon a compulsory misprediction

= A branch is taken the first time
—> Not present in BTB = gets installed

=» Replay BTB insertions to restore instruction, branch targets, and branch directions

MICRO’23: Warming Up a Cold Front-End with Ignite

14

q
\". THE UNIVERSITY of EDINBURGH

IGNITE

Comprehensive solution for restoring front-end microarchitectural state

= Records complete and non-redundant control
flow graph of one invocation

))) CPU Core
Monitors only BTB insertions _ BPU BN
= Stores trace of BTB insertions as metadata in BIM
memory MMU | | I-$
Record @
Logic L2-$
gl
I
Metadata : v
cmo
- - - ry

MICRO’23: Warming Up a Cold Front-End with Ignite 15

THE UNIVERSITY of EDINBURGH

) informatics

IGNITE

Comprehensive solution for restoring front-end microarchitectural state

= Replays u-arch state upon next invocation of the
same function
= Single, unified metadata is used to:
1. Restore BTB entries

2. Initializes the Bimodal predictor

3. Prefetch instructions on-chip into L2
= Populates the |-TLB as a by-product

= Integrates with FDP
= The warmed-up BPU effectively prefetches
instructions into L1

= Fully decoupled from the core
= Triggered by function invocation

Simple, non-invasive design with unified metadata

MICRO’23: Warming Up a Cold Front-End with Ignite 16

Il Boomerang + JB I Ignite [@Mldeal

-
o4
(&

IGNITE: Performance

% THE UNIVERSITY of EDINBURGH

informatics

2.0 1
o 1.8‘_
S 1.6 -

v
O 1.4 - ‘
Q_ J
U 1.2 -
1.0 -

R R R

N N N
%

RO Ko e

lgnites comprehensive state restoration

= Covers > 80% BTB misses and > 50% L1l misses

= Reduces branch mispredictions by > 60%
=> This translates to a 43% speedup over next-line

= Captures the bulk of the opportunity at low design complexity

lgnite is a simple and effective

MICRO’23: Warming Up a Cold Front-End with Ignite

17

A
\". THE UNIVERSITY of EDINBURGH

&y informatics

Takeaways

Serverless functions present new challenges for modern CPUs
* Lukewarm execution: cold u-arch state due to heavy function interleaving

Analysis shows severe front-end bottlenecks due to lukewarm execution

= L1 instruction misses, BTB misses and branch mispredictions
= Cold Branch Predictor Unit limits the efficacy of prior work

= A solution for cold front-end must comprise:
" instructions, branch targets and branch directions

Ignite: Comprehensive microarchitectural state restoration for the CPU front-end
= Single, unified metadata for instructions, branch targets and branch directions
= Simple and effective solution for the cold front-end
= Speeds up interleaved serverless function executions by 43%

18

Thank you!

Warming Up a Cold Front-End with Ignite

David Schall Andreas Sandberg
david.schall@ed.ac.uk andreas.sandberg@arm.com
University of Edinburgh Arm Ltd.

Edinburgh, UK
ABSTRACT

Serverless computing is a popular software deployment model
for the cloud, in which applications are designed as a collection
of stateless tasks. Developers are charged for the CPU time and
memory footprint during the execution of each serverless function,
which incentivizes them to reduce both runtime and memory usage.
As a result, functions tend to be short (often on the order of a
few milliseconds) and compact (128-256 MB). Cloud providers can

Cambridge, UK

ACM Reference Format:

Boris Grot
boris.grot@ed.ac.uk
University of Edinburgh
Edinburgh, UK

David Schall, Andreas Sandberg, and Boris Grot. 2023. Warming Up a Cold
Front-End with Ignite. In 56th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO °23), October 28-November 1, 2023, Toronto,
ON, Canada. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/

3613424.3614258

pack thoy
context s
result, wi
common
cold due

lukewarn

lukewarny
corrobor:
dation is

Extensive characterization
Design details

Sensitivity studies

opular cloud programming
se a task graph of stateless
se to an invocation (e.g, a
serverless, developers pay
t only during a function’s
s attractive since it offers
se basis. Meanwhile, cloud
infrastructure by shutting

= README.md Va

|le by their stateless nature.

Fetch Directed Instruction Prefetching for gem5 »

This is the develd
decoupled front

o known as

vSwarm-u: Microarchitectural |t-end design for high
Research for Serverless

performance seny

This implementa - nd design

comparable to modern servers in gem5.

H FDP Implementation in gemb5 -
« https://github.com/dhschall/gem5-fdp/

Serverless workloads (vSwarm)

[e]
2

B

gemb5 infrastructure (vSwarm-u):

arm

19

https://github.com/dhschall/gem5-fdp/
https://github.com/vhive-serverless

	Main Presentation
	Slide 1: Warming Up a Cold Front-End with Ignite
	Slide 2: Serverless
	Slide 3: Serverless Characteristics on a Server
	Slide 4: Serverless on a Cloud Server
	Slide 5: Understanding Lukewarm Execution
	Slide 6: Lukewarm Executions Challenge Modern CPUs
	Slide 7: Lukewarm Executions Challenge Modern CPUs
	Slide 8: Simulation Infrastructure
	Slide 9: Prior Art in Front-end Mitigation
	Slide 10: Prior Art in Front-end Mitigation
	Slide 11: Effect of the Cold Branch Predictor
	Slide 12: Addressing the Cold Front-end
	Slide 13: Addressing the Cold Front-end
	Slide 14: Addressing the Cold Front-end
	Slide 15: IGNITE
	Slide 16: IGNITE
	Slide 17: IGNITE: Performance
	Slide 18: Takeaways
	Slide 19

