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Serverless

Rapidly emerging cloud execution model

= More than 50% of all cloud customers of AWS, Google Cloud
and Azure use serverless [Datadog 2023]

Applications are organized as a graph of tiny stateless functions

= Functions run only on-demand
" |nvoked via trigger event o

= Functions are stateless
= Facilitates rapid and on-demand scaling down to zero

= Developer: pay per invocation (CPU+memory), not idle time

= Cloud providers: high density and resource utilization

Serverless is a hot topic for research!
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Serverless Characteristics on a Server - informatics
Serverless sharply contrasts with conventional workloads
= Conventional:
= Large VMs constantly occupy server resources Conventional workloads  Serverless workloads
= Serverless: on a server on a server
= Short function execution times: a few ms or less Core 0 | | Coren Core 0 | ... Coren
= Small memory footprint: tens of MB

= Sporadically invoked (seconds or minutes) - pp 2
[Microsoft Azure @ATC20] Memory
Implications:

= Extreme multi-tenancy:
Thousands of functions resident on a server

Inter-arrlval time

Executlon tlmellne of one CPU core

= Huge degree of interleaving between two
invocations of the same function

Microarchitecture is not designed for serverless!
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Serverless on a Cloud Server

Prior work found [Lukewarm Serverless Functions @ISCA’22]:

* Huge degree of function interleaving causes severe performance

degradation.
Serverless workloads

e Lukewarm execution: on a server

* Functions reside warmly in memory
Core0 |...| Coren

= On-chip microarchitectural state is cold for every invocation

* Thrashed by other interleaved executed functions IIHIIIHEHIIHIHI'

Memory
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Understanding Lukewarm Execution &y informatics

Use Top-down Analysis to study 20 serverless functions

= |Intel Ice Lake Server CPU
= 32 cores, two socket, SMT disabled, 32KB L1l, 48KB L1D,
1.25MB L2/core, 54MB LLC

Back-to-Back Execution
= Workloads:

@ | I l | l l |Function executing|
= 20 diverse serverless functions from vSwarm ......

CPU core execution timeline

= ... on 3 different runtimes: Python, Golang, Node)S

= ... in 3 main types of programming languages: compiled,

interpreted, |IT ed
Interleaved Execution

= Compare back-to-back to interleaved execution

| Function executing |
= Back-to-back: Core repeatedly processes the same function l l l Stressor models
= Interleaved: After each invocation of the function, a stressor ...... "1 focated functions
is used to thrash the on-chip uarch state CPU core execution dmeline
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Lukewarm Executions Challenge Modern CPUs & informatics

Top-Down Analysis on Intel Ice Lake
Back-to-Back T Interleaved

5.0
4.0
= 3.0
Y20
1.0 7 2 - 7 % 7
WA A O | A A\ )| A7 7| 7

Interleaving drastically increases CPIl by 100-294%

= If the microarchitecture is warm, performance is high

= Caches and the branch predictor leverage high commonality across invocations to boost performance
= The problem is the cold microarchitecture due to interleaving

MICRO’23: Warming Up a Cold Front-End with Ignite 6



ol LV [_-/? :
“@)> THE UNIVERSITY of EDINBURGH

Lukewarm Executions Challenge Modern CPUs ‘& informatics

Top-Down Analysis on Intel Ice Lake
[ Retiring 1 Fetch Bound 1 Bad Speculation I Backend Bound

5.0
4.0
= 3.0
E') 2.0 / Front-End
. Bound

1.0
0.0

Interleaved
execution

Back-to-back
execution

Stall cycles in front-end (FE) bound categories dominate:

= FE: Fetch Bound (I-cache, I-TLB) + Bad Speculation (BTB + branch predictor)
= FE bound stalls collectively increase by 130-490% (215% on average) due to interleaving

Does prior work help with the cold front-end?
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Simulation Infrastructure

Full system simulation of a two-node setup in gem5:

= Detailed dual-core Ice Lake-like CPU model
= 2.4 GHz, 352 entry ROB, 5-way decode
= Caches: L1-1/D: 32/48KB, : L2:1.25MB/core, L3: 8MB
=  BPU: 64kB LTAGE, 12k entry BTB (After Sapphire Rapids)

= Secondary node for driving invocations

Exact same software stack as on real hardware

» Full end-to-end simulations

Extend gem5 by an industry-standard front-end design
= Fetch directed prefetch (FDP)

= Employed in IBM’s z14/z15, Arm’s Neoverse, Samsung's Exynos

= Released and in the process of upstreaming to gem5
" https://github.com/dhschall/gem5-fdp/
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Driving Detailed node
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Prior Art in Front-end Mitigation
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&) informatics

Baseline: Ice Lake-like CPU model with Next-line instruction prefetcher

Evaluate three different designs:

1. Jukebox: Prior work on lukewarm execution

* Focus on off-chip instruction misses

= Record-and-Replay instruction prefetcher

= Targets L2 cache

2. Boomerang: FDP + BTB prefilling

= FDP-based instruction prefetching
= Targets L1 instruction cache
= + proactive branch target pre-decoding

3. Ideal: Warm front-end

* Perfect L1-1 and BTB
" Pre-trained conditional branch predictor
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Prior Art in Front-end Mitigation & informatics
Prior works fail to address lukewarm executions

= Jukebox mitigates only off-chip instruction misses 1.6+

= Jukebox + Boomerang is also ineffective. Why? o

35 1.4

Reason: 3

= Cold microarchitectural state of the & 1.2 -

Branch Predictor Unit (BPU)
= Short execution times of serverless functions impede
BPU training 1.0 === —

= High BTB + CBP MPKI (> 30 MPKI!)

INL

[ TJukebox

B Boomerang + |B
[ideal

Why is a warm BPU so important?
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Eftect of the Cold Branch Predictor

Front-end cannot stay on the correct path

* Boomerang prefetches instructions and branches from the wrong path
—> Poor miss coverage

* Boomerang has no notion of whether a branch is taken or not
- BTB prefetching is ineffective or even counterproductive

Branch mispredictions are resolved late in the pipeline

> Pipeline flush Branch misprediction
: BTB miss

S a

|
BTB ] FE > DE = EX o

The cold BPU limits the efficacy of prior work
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Addressing the Cold Front-end &y informatics

Objectives to address the problem of a cold front-end:

1. Instructions on-chip

= To shield the CPU from long instruction miss latencies

2. Warm BTB

= To allow the front-end detecting control flow

3. Warm Branch Predictor

= To stay on the correct path and avoid pipeline flushes

Question:

Can we get it all with a practical, non-invasive design?
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Addressing the Cold Front-end &y informatics

Observations:

1. High commonality across invocations
= Most instructions and branch executions are the same across invocations

= - We can record and replay control flow

2. The BTB working set is a compressed version of a program’s control flow
= Contains all control flow discontinuities

= > Can be used for instruction and BTB prefetching

3. Significant fraction of compulsory branch mispredictions
= Large instruction footprint + short execution time = code gets streamed
* Too few dynamic executions per branch to amortize compulsory miss

= = We can focus on compulsory misprediction
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Addressing the Cold Front-end

Observations:

1. High commonality across invocations

&) informatics

=>» BTB working set can be used to replay the entire control flow!
2. The BTB working set is a compressed version of a program’s (

What about the cold branch predictor?

Obijectives:
o Instructions on-chip
@ Warm BTB

Warm Branch Predictor

Insight:

= A BTB insertion happens only upon a compulsory misprediction

= A branch is taken the first time
—> Not present in BTB = gets installed

=» Replay BTB insertions to restore instruction, branch targets, and branch directions
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IGNITE

Comprehensive solution for restoring front-end microarchitectural state

= Records complete and non-redundant control
flow graph of one invocation

) ) ) CPU Core
Monitors only BTB insertions _ BPU BN
= Stores trace of BTB insertions as metadata in BIM
memory MMU | | I-$
Record @
Logic L2-$
gl
I
Metadata : v
cmo
- - - ry

MICRO’23: Warming Up a Cold Front-End with Ignite 15



THE UNIVERSITY of EDINBURGH

) informatics

IGNITE

Comprehensive solution for restoring front-end microarchitectural state

= Replays u-arch state upon next invocation of the
same function
= Single, unified metadata is used to:
1. Restore BTB entries

2. Initializes the Bimodal predictor

3. Prefetch instructions on-chip into L2
= Populates the |-TLB as a by-product

= Integrates with FDP
= The warmed-up BPU effectively prefetches
instructions into L1

= Fully decoupled from the core
= Triggered by function invocation

Simple, non-invasive design with unified metadata
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lgnites comprehensive state restoration

= Covers > 80% BTB misses and > 50% L1l misses

= Reduces branch mispredictions by > 60%
=> This translates to a 43% speedup over next-line

= Captures the bulk of the opportunity at low design complexity

lgnite is a simple and effective
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Takeaways

Serverless functions present new challenges for modern CPUs
* Lukewarm execution: cold u-arch state due to heavy function interleaving

Analysis shows severe front-end bottlenecks due to lukewarm execution

= L1 instruction misses, BTB misses and branch mispredictions
= Cold Branch Predictor Unit limits the efficacy of prior work

= A solution for cold front-end must comprise:
" instructions, branch targets and branch directions

Ignite: Comprehensive microarchitectural state restoration for the CPU front-end
= Single, unified metadata for instructions, branch targets and branch directions
= Simple and effective solution for the cold front-end
= Speeds up interleaved serverless function executions by 43%
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