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ABSTRACT
Serverless computing is a popular software deployment model
for the cloud, in which applications are designed as a collection
of stateless tasks. Developers are charged for the CPU time and
memory footprint during the execution of each serverless function,
which incentivizes them to reduce both runtime and memory usage.
As a result, functions tend to be short (often on the order of a
few milliseconds) and compact (128–256 MB). Cloud providers can
pack thousands of such functions on a server, resulting in frequent
context switches and a tremendous degree of interleaving. As a
result, when a given memory-resident function is re-invoked, it
commonly finds its on-chip microarchitectural state completely
cold due to thrashing by other functions — a phenomenon termed
lukewarm invocation.

Our analysis shows that the cold microarchitectural state due to
lukewarm invocations is highly detrimental to performance, which
corroborates prior work. The main source of performance degra-
dation is the front-end, composed of instruction delivery, branch
identification via the BTB and the conditional branch prediction.
State-of-the-art front-end prefetchers show only limited effective-
ness on lukewarm invocations, falling considerably short of an
ideal front-end. We demonstrate that the reason for this is the cold
microarchitectural state of the branch identification and prediction
units. In response, we introduce Ignite, a comprehensive restoration
mechanism for front-end microarchitectural state targeting instruc-
tions, BTB and branch predictor via unified metadata. Ignite records
an invocation’s control flow graph in compressed format and uses
that to restore the front-end structures the next time the function
is invoked. Ignite outperforms state-of-the-art front-end prefetch-
ers, improving performance by an average of 43% by significantly
reducing instruction, BTB and branch predictor MPKI.

CCS CONCEPTS
• Computer systems organization → Architectures; Cloud
computing.
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1 INTRODUCTION
Serverless computing has emerged as a popular cloud programming
paradigm. Serverless applications comprise a task graph of stateless
functions that run on-demand in response to an invocation (e.g, a
mouse click or from another function). In serverless, developers pay
for the CPU time and memory footprint only during a function’s
execution. For developers, this model is attractive since it offers
high scalability on a pay-for-what-you-use basis. Meanwhile, cloud
providers get high utilization out of their infrastructure by shutting
down idle functions — a task made simple by their stateless nature.

The serverless model incentivizes developers to have fine-
grained functions that can be scaled independently of each other
and that have a low execution time and memory footprint. Indeed,
studies show that serverless functions tend to have short execu-
tion durations, as low as a millisecond or less [18, 19] and memory
footprints often in the range of 128–256 MiB [18]. This allows thou-
sands of functions to be packed onto a modern server, with typical
invocation intervals ranging from seconds to minutes [54].

The large number of colocated functions with extremely short
running times result in unprecedented frequency of context switch-
ing. Moreover, the relatively long inter-invocation intervals mean
that thousands of other functions may execute between two in-
vocations of a given function. As a result, a re-invoked function
that is live on a server may find its microarchitectural CPU state
(including caches and in-core structures) completely cold due to
thrashing by interleaved invocations of other functions. Recent
work has termed this phenomenon a lukewarm invocation [51].

Our characterization of a suite of serverless functions on a con-
temporary Intel Xeon Ice Lake server CPU reveals that the cold
microarchitectural state due to lukewarm invocations causes a per-
formance degradation of 2x or more as compared to back-to-back
invocations in which the microarchitecture stays warm. These re-
sults corroborate the results of a prior study on an older (Broadwell-
class) CPU [51], indicating that the problem is fundamental and is
unaddressed by a newer, more aggressive microarchitecture.

A detailed analysis of the sources of performance stalls reveals
the front-end (i.e., instruction delivery, branch identification and
branch prediction) to be the main culprit behind the poor per-
formance on lukewarm invocations. Collectively, the front-end is
responsible for two-thirds of performance degradation as compared
to executions with warm microarchitectural state. These results
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echo earlier work in this space, which identified off-chip instruc-
tion misses as the single largest contributor to the performance
loss in lukewarm executions [51]. To mitigate the problem, the
work proposed a dedicated prefetcher, called Jukebox, to bring the
previously-recorded instruction working set into the L2 cache upon
a function’s invocation [51].

Our evaluation of state-of-the-art front-end prefetchers — Juke-
box, Boomerang (which proactively fills the L1-I and the BTB) [41],
and the two combined — shows that they fall considerably short
of an ideal front-end that delivers 61% average speed-up over an
aggressive next-line prefetcher. In comparison, the strongest per-
former — a combination of Jukebox and Boomerang — provides
only a 20% speed-up as it fails to reduce the high miss rate across
all front-end structures, namely the L1-I (26 MPKI), BTB (13 MPKI)
and the conditional branch predictor (21 MPKI).

We perform a root-cause analysis to understand why the state-
of-the-art in front-end prefetching is performing so poorly and find
that the cold microarchitectural state of the BTB and the conditional
branch predictor (CBP) is compromising prefetching performance.
Misses in the BTB and mispredictions of conditional branches con-
stantly drive the front-end (both demand and prefetch) off the cor-
rect path, resulting in poor prefetching performance and frequent
pipeline flushes. Moreover, the short execution time of serverless
functions does not allow the warm-up time of these structures to
be amortized.

To overcome the cold front-end challenge of lukewarm invoca-
tions, we propose Ignite, a comprehensive restoration mechanism
for front-end microarchitectural state targeting instructions, BTB
and CBP via unified metadata. The underlying insight behind Ignite
is that the BTB working set provides an efficient way of approxi-
mating a program’s (or container’s) control flow graph and can be
used for instruction, BTB and CBP prefetching. Ignite capitalizes
on this insight by monitoring BTB insertions to create compressed
control flow records that are stored in main memory. When the
same function is invoked again, the metadata is streamed from
memory and used to generate instruction prefetches and restore
the state of the BTB and the bimodal branch predictor. Ignite has
low logic complexity, is easy to integrate with existing front-end
prefetchers, and seamlessly supports thousands of functions on a
server by virtue of having no metadata on-chip. Our evaluation
of Ignite shows that it improves performance by 43%, on average,
and significantly reduces the miss rate in all front-end structures
as compared to prior art.

To summarize our contributions:
• We corroborate prior work, demonstrating a significant perfor-

mance degradation in the execution of lukewarm serverless func-
tions due to cold microarchitectural state. The main source of
the performance degradation is the front end: instruction fetch
and the BPU.

• We show that the combination of state-of-the-art front-end
prefetchers, Boomerang [41] + Jukebox [51], improves perfor-
mance by only 20%, on average, as compared to 61% with an ideal
front-end. Cold BPU state is to blame.

• We introduce Ignite, a record-and-replay restoration mechanism
that uses a unified control flow representation recorded during

one invocation of the function to prefetch instructions and restore
the BPU’s state upon the next invocation.

• We demonstrate that Ignite improves performance by 43%, on
average, by providing a significant reduction in L1-I, BTB and
CBP MPKI.

2 MOTIVATION
2.1 Serverless Basics
In the serverless model, developers structure their applications as
a task graph of stateless event-triggered functions1. Functions are
invoked on-demand, with all resource management decisions (e.g.,
whether to spawn a new function instance or use an existing one)
ceded to the cloud provider. For cloud providers, the serverless
model is a way to get a high resource utilization and monetize
it — a challenge that’s difficult to meet with traditional “rented”
VMs that may stay idle for indefinite periods of time while holding
expensive hardware resources. Cloud providers pass the efficiency
gain of serverless to the developers in the form of pay-per-use
billing, whereby developers pay only for the CPU time and memory
footprint of each function invocation. This model contrasts starkly
with traditional cloud software deployments, where developers
“rent” cloud resources to run virtual machines (VMs) and pay for
the uptime of their VMs regardless of utilization.

Because cloud providers bill only for the actual CPU usage and
memory footprint of a running function, they have an incentive
to shut-down inactive function instances to recycle resources — a
model that’s enabled by the fact that functions are stateless. How-
ever, bringing up a new instance is expensive in terms of storage
and network bandwidth required to fetch the function image and
the CPU time needed to launch the container. Thus, cloud providers
tend to keep recently-invoked instances alive (aka warm), for some
number of minutes in hopes of receiving invocations that can be
served by these instances.

For developers, the pay-per-usemodel incentivizes compact func-
tions that, in many cases, run for merely a few milliseconds or less
and consume as little as 128 MiB of memory [18–20, 54]. For cloud
operators, the combination of compact functions and keep-alive
periods means that thousands (!) of serverless functions can be
packed onto a typical cloud server [4, 6]. Given that a typical warm
function instance is invoked once every several seconds or min-
utes [54], hundreds or even thousands of other function instances
may run between two consecutive invocations of a given instance,
resulting in an unprecedented frequency of context switches and a
vast number of interleaving contexts on that server.

2.2 Lukewarm Serverless Invocations
Prior work [51] showed that the massive degree of interleaving
causes extensive thrashing of on-chip microarchitectural state, in-
cluding caches and in-core structures. As a result, when a given
warm function is re-invoked, it tends to find the on-chip microarchi-
tectural state completely cold — a phenomenon termed lukewarm
invocation [51]. Compared to back-to-back invocations of a given

1The serverless model easily supports stateful services. Any state that must persist
beyond the function call boundaries must be saved to a conventional datastore or
propagated to the next function in the task graph as part of the invocation.
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Figure 1: CPI stack for interleaved execution (shaded) vs. back-to-back execution (solid) on an Intel Ice Lake CPU.

function instance, lukewarm invocations incur a significant perfor-
mance overhead due to cold microarchitectural state that results
in frequent cache misses, branch mispredictions, etc. Often, the
overhead cannot be amortized over a long execution interval due
to the short duration of many serverless functions [51].

We corroborate the prior work by showing that, indeed, cold mi-
croarchitectural state degrades execution efficiency for serverless
functions. We use a suite of 20 diverse serverless functions, which
we run on an Intel Ice Lake CPU. Details of our benchmarking
setup can be found in Section 5. To achieve statistically meaningful
results in a tractable amount of time and with a high degree of
reproducibility, we model the effects of interleaving by using a
stressor [16] that runs in-between invocations of a function-under-
test (FUT) on the same core as the FUT. As shown in prior work, at
the microarchitectural level, this methodology achieves a compara-
ble effect to interleaving numerous invocations of many different
functions [51].

Figure 1 plots cycles per instructions (CPI) for back-to-back in-
vocations of the same function instance compared to interleaved
invocations. Note that, performance-wise, back-to-back invocations
are the best-case scenario since the re-invoked function finds all mi-
croarchitectural resources warm. As the figure shows, interleaved
executions consistently increase the CPI (i.e., degrade performance)
by 100-294% (162% on average) as compared to back-to-back invo-
cations.2

To identify the sources of performance degradation due to in-
terleaving, we use performance counters to break down execution
cycles into four categories: retiring, instruction fetch stalls (cache
and TLB misses for instructions), bad speculation (BTB misses and
mispredictions of conditional branches) and back-end stalls (cache
and TLB misses for data). Our classification roughly follows the
Intel Top-Down methodology [59]. The first category, retiring, is
the only “good” one, representing cycles where useful work was
completed. The three other categories are characterized by pipeline
stalls that impede efficient execution 3. Because the branch predic-
tor unit (BPU), composed of the branch target buffer (BTB) and the
conditional branch predictor (CBP), works together with the fetch
unit to steer control flow and deliver instructions to the pipeline,

2While our results are consistent with prior work characterizing lukewarm invoca-
tions [51], our numbers cannot be directly compared with those reported in [51]. In
addition to the fact that we study a much more recent server featuring an Intel Ice
Lake CPU (prior work studied an Intel Broadwell CPU), we have made a number of
improvements to the measurement methodology and have used more recent versions
of the functions.
3The classification is not always precise since stalls can overlap with each other and
with retirement of other instructions [59].
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Figure 2: Working sets of serverless functions for CPU front-
end structures.

we refer to fetch stalls and bad speculation collectively as front-end
stalls.

As Figure 1 shows, the performance degradation under inter-
leaved executions is caused by a significant increase in stall cycles
across all stall categories. By far, the largest increase is observed in
front-end stalls. Collectively, front-end stalls increase by 130-490%
(215% on average), which corresponds to two-thirds of the overall
performance degradation. These results corroborate prior work [51]
and show that even on latest-generation hardware, lukewarm in-
vocations of serverless functions result in poor microarchitectural
efficiency largely due to the front-end bottleneck.

2.3 Severless Working Set Characteristics
To get a better understanding of why serverless workloads put such
high pressure on the CPU front-end we examine the working sets of
serverless function invocations. For this analysis, we use the gem5
simulator [13, 45] to run the same set of serverless functions as in
the hardware experiments (Section 2.2). We leverage the vSwarm-𝜇
framework [43], which enables us to run the entire software stack
(including Docker, OS, full gRPC stack) as used for our hardware
characterization in gem5’s full-system mode. Details of our simula-
tion and workload setup can be found in Section 5.3. Starting from
a checkpoint, we trace the execution of 25 consecutive invocations
and record instruction cache accesses at cache block granularity
and allocations in the BTB. We remove repeating addresses to iden-
tify the instruction working set and the branch working set. Note
that never-taken branches do not consume BTB (and BPU) capac-
ity [2, 3]. Therefore, the BTB working set, which contains branches
that are taken at least once, represents the branch working set.

Figure 2 presents the average instruction (a), and branch working
set (b) accumulated during one invocation. The graphs show that,
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despite short execution times, serverless functions execute large
amounts of code and a large number of unique branches relative to
32 KiB instruction cache and 5 K entry BTB found in Intel’s Ice Lake
server [29]. A single function invocation touches 240–620 KiB of
code memory and accumulates branch working sets ranging from
5.4 K BTB entries (Auth-G) to almost 14 K BTB entries (RecO-P).

Our findings show that the front-end microarchitectural state
may overwhelm existing CPU front-end structures even for a single
serverless function. With thousands of functions interleaving their
executions on a single server, a CPU is unable to retain the front-
end microarchitectural state across invocations, which explains the
observed front-end bottleneck under interleaving.

2.4 Prior Art in Front-End Mitigation
The front-end bottleneck is a well-established challenge for server
applications [33, 35, 40, 41]. The root cause of the bottleneck are
deeply-layered software stacks with multi-megabyte instruction
working sets and commensurately large control flow state. For
an individual server workload, the instruction footprint typically
fits into the on-chip last-level cache (LLC) but easily overwhelms
per-core private front-end structures, namely the L1-I, BTB and
CBP [41, 44]. Serverless amplifies the front-end challenge, since
potentially thousands of serverless functions may interleave on a
server, meaning that a given invocation is likely to find none of its
on-chip microarchitectural state warm.

2.4.1 Front-end Prefetching for Conventional Server Workloads. A
significant body of research has studied microarchitectural tech-
niques for overcoming the front-end bottleneck in servers. The
state-of-the-art in this space can be classified into two broad cat-
egories: temporal streaming and fetch-directed prefetching. We
discuss each of these in turn, followed by a discussion of prior art
in mitigating the front-end bottleneck for serverless functions.

Temporal streaming [23] leverages the fact that control flow in
server applications is recurrent, leading to repeating sequences of
instructions and BTB accesses. These sequences can be recorded
and subsequently prefetched, with prefetching initiated upon an
access (or miss) to a triggering instruction. Temporal streaming has
been shown to be highly effective in eliminating the vast majority
of instruction misses [22] and BTB misses [14]. The most recent
work in this area, called Confluence [33], demonstrated a unified so-
lution for instruction and BTB prefetching whereby the prefetched
instruction cache blocks are predecoded on entry into the L1-I, the
branch instructions and their targets are extracted and installed
into the BTB.

The main downside of temporal streaming is its high storage
cost, with hundreds of kilobytes of metadata required for high miss
coverage. Prior work studying individual server applications has
shown that the overhead can be ameliorated by virtualizing the
metadata into the LLC [14, 33]. However, metadata virtualization
is hampered by workload colocation, because each colocated work-
load requires LLC capacity to store the metadata for the instruction
prefetcher. Serverless functions exacerbate this problem due to their
high colocation density and, thus, prohibitive on-chip metadata
costs.

Fetch-Directed Prefetching. The central motivation behind fetch-
directed prefetching (FDP) is to leverage the high accuracy of mod-
ern branch predictors to identify future control flow and prefetch
the predicted instruction cache blocks into the L1-I [50]. FDP de-
couples the branch predictor from instruction fetch through a Fetch
Target Queue (FTQ), which stores predicted targets to be consumed
by the prefetcher and allows the branch predictor to run ahead of
the fetch stream. Compared to temporal streaming, FDP enjoys very
low implementation complexity and requires no metadata, which
makes it extremely attractive for industry adoption. Indeed, a num-
ber of recent server CPUs have implemented FDP [2, 27, 32, 48].

Alas, the strength of FDP, which is its low cost and complexity,
is also its weakness, since its efficacy is limited by BPUs ability to
keep the branch working set in its BTB and CBP. Recent work has
shown that for traditional server workloads, the BTB is particu-
larly important as it helps identify upcoming branches and detect
discontinuities in the control flow [40, 41]. By detecting the dis-
continuities (with the help of the branch predictor for conditional
branches), FDP can predict upcoming non-sequential cache blocks
and prefetch them into the L1-I. Perhaps not surprisingly, recent
server CPUs have considerably beefed up their BTB configurations;
for instance, the upcoming Intel Sapphire Rapids CPU features a
12 K entry BTB, more than doubling the capacity over the 5 K entry
BTB in the preceding Ice Lake architecture [8, 58].

To further reduce FDP’s dependence on BTB capacity, re-
cent research in FDP has focused on BTB prefetching. Thus,
Boomerang [41] proposes detecting BTB misses in FDP through the
use of a basic-block-oriented BTB, and resolving them by retrieving
the missing branches from target cache blocks. BTB prefetching not
only improves the efficacy of FDP, but also reduces pipeline flushes
stemming from BTB misses. Notably, published results indicate
that Boomerang and Confluence achieve similar performance gains
on traditional server workloads, but the lower complexity of FDP
has made it the preferred choice for front-end mitigation in recent
server CPUs [2, 27, 32, 48].

2.4.2 Front-end Prefetching for Serverless. Recent work has identi-
fied the front-end bottleneck in lukewarm executions of serverless
function [51], noting that interleaving-induced thrashing results
in frequent off-chip misses for instructions — a phenomenon not
previously reported in characterizations of server workloads. In
response, the work proposed a specialized instruction prefetcher,
Jukebox, which addresses off-chip instruction misses. Jukebox is a
temporal streaming prefetcher that records a trace of L2 instruc-
tion misses and stores it in a compact format in main memory,
thereby supporting thousands of warm functions without the as-
sociated on-chip storage overhead. When a function is re-invoked,
Jukebox reads the prefetcher metadata from memory and initiates
bulk prefetching of instructions from memory into the L2 cache
of the core executing the function. Evaluation showed Jukebox
to be highly effective in eliminating the vast majority of off-chip
misses for instructions with just 32 KiB of in-memory metadata per
function instance.
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Figure 3: Performance, L1-I MPKI and BPUMPKI for various
front-end configurations on lukewarm invocations.

3 FRONT-END PREFETCHING ON
LUKEWARM INVOCATIONS

We next study the performance of state-of-the-art microarchitec-
tural front-end prefetchers on lukewarm invocations. We evaluate
Jukebox [51], the state-of-the-art for mitigating the off-chip misses
for instructions for serverless, and Boomerang [41], a unified FDP
instruction and BTB prefetcher. For clarity of exposition, we do not
show results for a temporal streaming prefetcher in this section, but
note that our findings fully extend to that class of designs, which we
demonstrate in Section 6.5. The same gem5 setup as in Section 2.3
is used to evaluate the prefetchers in detailed cycle-accurate simu-
lations.

3.1 Big Picture Results
Figure 3 presents a competitive comparison of the following front-
end configurations: Next-line (NL) represents our baseline and fea-
tures an aggressive next-line prefetcher that triggers prefetches
on a miss to the L1-I and also on hits to prefetched lines; Juke-
box; Boomerang; and Boomerang+JB which combines Boomerang
with Jukebox. By combining Jukebox and Boomerang, we relieve
Boomerang from hiding the high latency of off-chip misses as Juke-
box prefetches these accesses, thus making Boomerang more effec-
tive at prefetching into the L1-I and BTB. We also consider an Ideal
front-end configuration that features a perfect L1-I, perfect BTB,
and a pre-trained CBP.

The first graph in Figure 3 shows the speed-up of the various tech-
niques, normalized to NL. Results are averaged across all 20 server-
less functions in our benchmark suite. We observe that Boomerang
delivers an average speed-up of 12%. It is outperformed by Jukebox
(16% average speed-up), despite the fact that Jukebox prefetches
only into the L2 while Boomerang prefetches into the L1-I and the
BTB. This indicates that FDP struggles to hide the latency of off-
chip misses. Combining Boomerang with Jukebox (Boomerang+JB)
increases speed-up to an average of 20% — a rather modest im-
provement compared to an ideal front-end that delivers an average
performance gain of 61%.

To understand the reasons for the underwhelming performance
of existing front-end prefetchers, we first examine their ability to
cover L1 misses for instructions. The expectation is that Boomerang,
particularly when combined with Jukebox, should be able to cover
the majority of L1-I misses. The middle graph in Figure 3 indicates
that this is not the case. Compared to the next-line prefetcher, whose
L1-I miss rate is 37 MPKI, both Boomerang and Boomerang+JB do
reduce the miss rate in the L1-I, but with L1-I MPKI of 24 and 26,
respectively, both techniques fail to shield the core front-end from
instruction misses.
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Figure 4: Sensitivity to BPU state

Next, we examine the BPU by focusing on the BTB miss rate and
the CBP misprediction rate. As shown in the last graph of Figure 3,
both rates are high, with the average BPU miss rate exceeding 30
MPKI for both Boomerang and Boomerang+JB4. We note that while
both variants of Boomerang reduce the BTB miss rate as compared
to NL, which is expected since Boomerang prefetches into the BTB,
the rate of conditional branch mispredictions increases as compared
to NL. We examine this phenomenon in the following section.
Take-away: The state-of-the-art front-end prefetching ensemble
falls considerably short of an ideal front-end when faced with luke-
warm serverless function invocations, exposing the core to high
L1-I, BTB, and CBP MPKI.

3.2 Cold uArch State in Focus
We hypothesize that the reason for the poor performance of
Boomerang-enabled front-end configurations is the cold BPU state
owing to lukewarm invocations. While Boomerang prefetches into
the BTB, it does not help with the CBP. Moreover, our results show
that when faced with lukewarm invocations, Boomerang’s prefetch
effectiveness into the BTB is limited, with average BTB MPKI of 13
(Figure 3).

The BPU plays a two-fold role in achieving high front-end per-
formance. The first role is on the prefetching side, where the BPU
identifies upcoming branches and their targets via the BTB and, in
the case of conditional branches, predicts whether they are taken.
Branches that are not present in the BTB or for which the CBP is
unable to make an accurate prediction steer the prefetcher onto
the wrong path, subsequently resulting in uncovered misses for
instructions. The second role of the BPU is in avoiding pipeline
resets since every mispredicted or unidentified branch requires a
front-end resteer, entailing a pipeline flush and a reset of the fetch
PC.

To understand the effect of the cold vs warm microarchitectural
state of the BPU, we study the following Boomerang configurations.
The baseline is Boomerang+JB, as presented in the previous section.
Next, we evaluate the same configuration but with a warm BTB,
whereby the BTB state at the end of one invocation is preserved for
the next invocation of that function. Finally, we add a configuration
that combines a warm BTB and warm CBP (i.e., both the BTB and
CBP are preserved across two invocations of a function).

4One may wonder why Boomerang+JB has a higher L1-I and BPU miss rate than
Boomerang. The reason is that Boomerang+JB is more effective in covering front-end
misses (thanks to the Jukebox component), which allows its front-end to go faster than
in Boomerang; however, many of the fetched instructions are on the wrong path (due
to the high BTB and CBPmiss rate). Thus, Boomerang+JB fetches more instructions but
also experiences more L1-I and BPUmisses/mispredictions as compared to Boomerang.
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The results of the study are shown in Figure 4, which presents
speedup over NL. The figure shows that preserving the microarchi-
tectural state of the BPU across invocations of a function brings a
significant performance benefit. A warm BTB helps increase overall
performance by 4.2% over a cold front-end. Preserving the CBP
across invocations, in addition to the BTB, provides an additional
10% performance gain, bringing performance within 42% of an ideal
front-end.

The L1-I and BPU MPKI rates corroborate the performance story.
Preserving the BPU state across invocations helps keep the front-
end prefetcher on the correct execution path, delivering marked
reductions in L1-I and BPU MPKI. With a warm BTB, L1-I misses
reduce by 15% while the BPU MPKI reduces by 26%, predominantly
stemming from a 50% reduction in BTB misses. When the CBP is
also kept warm (together with the BTB), L1-I misses reduce by a
further 18% and the BPU MPKI drops by a further 42%.
Take-away: Cold BPU state arising from lukewarm invocations is
responsible for poor front-end performance on lukewarm invoca-
tions, even in the presence of a state-of-the-art front-end prefetch-
ing ensemble.

3.3 Effect of the Cold Branch Predictor
Finally, we focus on the large number of branch mispredictions and
the implications of a cold CBP on the front-end machinery. First, we
seek to understand the relative importance of CBP’s components
in the context of cold vs warm microarchitectural state. We model
a high-end CBP configuration comprised of 64 KiB L-TAGE and
5 KiB bimodal (BIM) base predictor5. Our baseline is Boomerang+JB
with a warm BTB and a cold CBP, which corresponds to the second
(green) bar from the left in Figure 4. Next, we consider the same
configuration but with a warm BIM component; note that the TAGE
component is cold. Finally, we consider a configuration with a
warm BPU; i.e., when both BIM and TAGE are kept warm across
invocations of a given function.

Results of the study are shown in Figure 5. We observe that
keeping only the BIM warm decreases the CBP mispredictions
from 19.3 to 14.5 MPKI, resulting in a performance improvement of
6.4%, on average. If the TAGE component is also kept warm, CBP
accuracy improves further, leading to 10 MPKI and another 4.5%
performance gain.

The question arises as to why the BIM has such high relevance
for serverless function despite consuming less than 1/10 of the
overall CBP size.

We hypothesize that many executed branches are highly biased
towards one direction and therefore easy to predict by the BIM.

5The actual CBP configuration in Ice Lake has not been made public.
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Figure 6: BPU MPKI of Boomerang+JB (warm BTB) split into
initial (striped) and subsequent misprediction (solid).

However, as the BIM is cold, those branches are mispredicted dur-
ing their initial dynamic execution. To validate our hypothesis, we
analyze when mispredictions occur during individual function invo-
cations. If a miss happens during the first execution of a branch, we
count it as initial miss. All other misses are counted as subsequent
miss. Figure 6 shows the corresponding split of initial and subse-
quent CBP mispredictions for Boomerang+JB with a warm BTB
(cold CBP). We find 12-49% (33% on average) of the mispredictions
are caused by branches executed for the first time during an invo-
cation. The results indicate that a significant faction of branches is
simple to predict once the CBP is aware of them, corroborating our
hypothesis.

The presence of a large number of initial CBP mispredictions
reveals a crucial insight to understand Boomerang’s poor perfor-
mance. Two conditions must be met to allow a branch to be specu-
latively taken: the CBP must predict taken, and the BTB must hold
the corresponding target. Otherwise, the branch is not taken. Thus,
combining a warm BTB with a cold CBP presents two problematic
situations. If the CBP is incorrect and predicts not-taken for a taken
branch, Boomerang’s BTB filling mechanism did not help eliminat-
ing the branch misprediction. Conversely, if the branch is not taken
but the CBP predicts taken, BTB filling was counterproductive since
not identifying the branch in the first place (by not placing it into
the BTB) would have prevented the misprediction.
Take-away: Keeping only the BIM warm across invocations
achieves 51% of the potential, in both MPKI and performance, com-
pared to keeping the entire CBP (which includes the much-larger
TAGE component) warm. The BIM’s high relevance is due to many
initial mispredictions, which compromise the existing BTB filling
techniques.

3.4 Summary
Our findings show that cold microarchitectural state due to luke-
warm invocations results in a critical front-end bottleneck even in the
presence of state-of-the-art front-end prefetchers.With instructions
on-chip, a unified front-end prefetcher filling the L1-I and the BTB
fails to achieve a significant MPKI reduction in these structures. Our
analysis reveals that the cold BPU state is to blame, with frequent
BTB misses and branch mispredictions leading to a high incidence
of fetches and prefetches on the wrong path.

Effectively tackling the cold front-end requires having instruc-
tions on-chip and the BPU initialized so as to identify branches and
predict conditional ones. An important finding is that initializing
only the BIM component of the CBP, which is much smaller and
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simpler than TAGE, achieves 51% of the benefit of initializing the
entire CBP (BIM+TAGE).

While prior work (Jukebox [51]) has demonstrated a solution
for avoiding off-chip misses for instructions, it does not address the
cold microarchitectural state in the BPU, which impedes existing
front-end prefetchers from attaining high efficacy. What is needed
is a light-weight mechanism to not only deliver instructions on-
chip, but to also restore the branch working set into the BTB and
the CBP upon function invocation.

4 IGNITE
We introduce Ignite, a comprehensive solution for restoring the
front-end microarchitectural state. At the heart of Ignite is a com-
pact and unified representation of the front-end microarchitectural
working set spanning instructions, BTB and CBP. Ignite operates
by recording the observed working set during the execution of
a given serverless function, then restoring it upon re-invocating
that function again. We use the term restoration to differentiate
Ignite from traditional prefetchers that continuously monitor the
current process and reactively prefetch at fine granularity (e.g., a
cache block or a page) triggered by a particular address, stride, or
PC. In contrast, Ignite unconditionally restores the entire recorded
instruction, BTB, and partial CBP working set at the start of an
invocation. Such bulk restoration is essential for enabling a rapid
warm-up of the core front-end.

In simplest terms, Ignite records control flow discontinuities as a
single stream of metadata. Control flow discontinuities arise when
the sequential flow of instructions is interrupted by a taken branch
(conditional, unconditional, function call/return). Each record in
Ignite’s stream represents a discontinuity in otherwise sequential
code, and is comprised of a branch PC, branch type, and a target.
The records form a chain of control flow, where the target of one
branch is the start of a contiguous block of code ended by the next
taken branch, identified by the next record in the stream.

The stream described above is comprehensive, recording every
observed taken branch, which allows the address of every executed
instruction to be trivially determined. However, such a trace is
highly redundant due to recurrent control flow (e.g., loops and func-
tions with multiple callers), thereby incurring significant metadata
storage costs. We exploit two insights to make unified front-end
metadata practical.

Our first insight is that the BTB working set (which may ex-
ceed the actual capacity of the BTB) provides a complete and non-
redundant representation of the control flow graph of the program.
Ignite leverages this insight to minimize metadata redundancy and
storage costs by only recording BTB insertions. Given a recorded
BTB working set, it is trivial to reconstruct the working set of in-
struction cache blocks by chaining branch PCs and their target
addresses. But what about the CBP?

Our second insight is that modern CPUs create new BTB entries
(i.e., insert branches into the BTB) only when a taken branch is
committed [2, 32]. Thus, the mere fact that a BTB entry is created
for a conditional branch implies that the branch was taken. Ignite
uses this insight at replay time to initialize the BIM to ’taken’ for
each conditional branch encountered in its metadata. Note that
Ignite does not restore TAGE, whose size and complexity would
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Figure 7: Ignite design overview and metadata record layout.

considerably encumber Ignite’s design. Thus, Ignite opts for sim-
plicity and low metadata cost in exchange for a modest loss in
branch prediction accuracy (Section 3.3).

Figure 7a provides an overview of Ignite. At record time, Ignite
simplymonitors BTB insertions andwrites the entries to a dedicated
region of memory. At replay time, Ignite reads the stream from
the beginning and uses it to restore instructions, BTB and BIM
as follows. The branch PC is used to prefetch the corresponding
instruction block into the L2 cache. Each stream entry directly
corresponds to a BTB entry and can be inserted into the BTB as
such. For conditional branches (identified via the branch type field),
the BIM entry corresponding to that PC is initialized as taken.

Ignite naturally integrates with FDP (e.g., FDIP [50] or
Boomerang [41]), thereby allowing effective instruction prefetch
from the lower levels of the cache hierarchy into the L1-I. Ignite’s
metadata is stored in main memory, thus naturally scaling with
the number of active serverless functions. Ignite has low microar-
chitectural complexity: its record logic needs to monitor only BTB
insertions as it uses the same information for its metadata as the
BTB entry being created, while the replay logic reads the recorded
stream in sequential order and, for each entry, issues an instruction
prefetch and inserts BTB and BIM entries. Thus, Ignite enables
high front-end miss coverage, high scalability and low integration
complexity.

Ignite was designed in the context of serverless functions. How-
ever, the approach is applicable in other contexts where frequent
switching between threads hurts performance [57, 61] due to cold
microarchitectural state. For example, Ignite could be beneficial
in modern mobile applications that are characterized by frequent
context switches or cases where microarchitectural state needs to
be flushed at context switches for security reasons [57].
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4.1 Record
The record logic of Ignite is responsible for recording the front-end
working set by capturing BTB entries at the point of their creation
and storing them into a dedicated, per-container, memory region.
The recorded working set needs to satisfy three requirements to
be useful at the replay stage. First, it needs to accurately capture
the branch working set. Second, it must be recorded in the order of
expected reuse to ensure timely instruction prefetching. Third, it
needs have low redundancy to minimize memory bandwidth and
storage requirements.

As noted in Section 4, the BTB in modern processors only inserts
taken branches. Furthermore, as a cold BTB can be expected when
recording starts (see Section 2.3), every new taken branch will result
in a BTB entry being allocated. This means that we can use BTB
allocation events to record new branches as they are encountered by
the front-end. With an unbounded BTB, the resulting trace would
contain a complete record of unique branches and their targets in
the order that they were first executed (i.e., in the order we expect
them to be executed in the future). In practice — with a finite BTB —
a branch may be evicted and, later, re-inserted, resulting in a small
degree of redundancy in the recorded trace.

Metadata compression: A naive way of storing branches and
their targets would be to store the branch PC and the target PC.
Assuming 48 bit virtual addresses, such a format would use at least
96 bit of storage per entry. This is clearly wasteful. We can use two
important observations to compress records. First, most branches
tend to be local, for example, inside a method call. This implies
that the target can be encoded as a small delta from the PC of the
branch instruction [11, 55]. Second, the distance to the next branch
from the target of the previous branch tends to be small, indicating
that a delta (from the previous target) can be used instead of the
full branch PC.

To compute the deltas, Ignite stores the last-inserted BTB entry
in a dedicated register. When a new entry is BTB created, simple
logic computes the delta from the target of the previous BTB entry
to the branch PC of the newly created entry. Similarly, a delta is
computed from the new branch PC to its target. Once an Ignite
metadata entry is formed, the register is updated with the content
of the newly-created BTB entry.

Ignite uses a fixed-size delta for the branch PC and another
delta for the target to simplify record and replay logic6. When
computed deltas exceed the pre-determined size, the full PC is used.
A single bit in each metadata entry specifies the format of the entry
with respect to whether deltas or full addresses are used. Figure 7b
visualizes the creation of metadata entry and its format.

4.2 Replay
The purpose of the replay phase is to deliver instructions into
the L2 cache and to prime the BTB and CBP to enable efficient
speculation. Priming the BTB and CBP has two complementary
benefits: it reduces front-end stalls for demand accesses due to more
accurate prefetches by FDP, and it reduces pipeline flushes due to
BTB misses and branch mispredictions. Meanwhile, prefetching of

6We empirically found 7 bits for branch PC delta and 21 bits for target delta to achieve
the highest compression.

instruction into the L2 reduces the risk of long-latency instruction
misses that cannot be hidden by FDP alone.

Ignite sequentially reads the metadata trace created in the record
phase and, for each metadata record, performs the following actions.
First, if the record uses delta-encoded branch and target fields, it
expands them. Using the full-length fields, it creates a BTB entry
and inserts it into the BTB. If the entry corresponds to a conditional
branch, it sets the appropriate BIM entry to ’weakly taken’. In
parallel with the BPU insertion, the replay logic uses the MMU to
translate the address of the branch PC comprised in the entry and
issues a prefetch to the L2 cache for the corresponding cache block.
Note that the act of address translation populates the I-TLB, hence
effectively serving as an I-TLB prefetcher.

Prefetch throttling: To avoid thrashing the BTB, Ignite throt-
tles the replay rate. For workloads with large branch working sets,
this effectively increases the reach of the BTB beyond its natural
size. We implement throttling by tracking the number of restored
BTB entries that have not been accessed by the core front-end either
for demand fetch or for prefetching. The tracking itself is imple-
mented using a dedicated per-entry bit in the BTB that gets set
when a BTB entry is inserted by Ignite and cleared when the entry
is accessed or evicted. A counter keeps track of the total number of
restored BTB entries that have not been touched; the counter is in-
cremented when an entry is restored and decremented whenever a
restored entry is first accessed or evicted without having ever been
used. Prefetching is throttling whenever the number of unaccessed
restored entries exceeds a predetermined threshold.

Divergence at replay time: In the unlikely event that a func-
tion’s behavior changes substantially between two invocations (i.e.,
from record to replay), Ignite may fail to accurately capture the
branch working set. In such cases, Ignite behaves similar to a system
without Ignite since BTB and CBP lookups would fail to capture
the new behavior in both cases. While we have not observed such
cases in our studies, they could be mitigated by running record and
replay simultaneously (see Section 4.3) to capture a branch working
set that evolves between invocations.

4.3 Operating System Interface
Ignite integrates with the operating system to manage memory and
to trigger record and replay when a function invoked. These two
components of Ignite have an independent set of control registers
to set the base address and size of the metadata region and to
activate recording or replay. This interface is, in fact, identical to
Jukebox[51]; we refer an interested reader to that work for a more
detailed description.

When a new function starts, the operating system allocates a
contiguous region of memory for metadata. It then points Ignite’s
record component to the metadata region using its base and size
registers. Once the metadata region has been configured, the oper-
ating system enables recording by setting a control bit and launches
the function. On subsequent invocations of the function, the op-
erating system configures the replay mechanism with a pointer
to the recorded metadata and its size. It then sets a control bit to
activate replay as soon as a function has been scheduled on a core.
Note that by starting replay together with the function, Ignite loses
the opportunity to cover misses at the very start of a function’s
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execution. However, Ignite rapidly establishes a sufficient prefetch
distance because the CPU stalls every time an instruction cache
miss is encountered, while Ignite’s prefetching does not.

Since replay and record are independent components, an operat-
ing system may choose to double-buffer metadata and activate both
replay and record at the same time. Doing so increases metadata
bandwidth and storage requirements but lets Ignite react to changes
in the branch working set.

4.4 Security Aspects
Ignite records microarchitectural state as metadata into main mem-
ory, raising the question of whether this opens up security vul-
nerabilities. Ignite and its metadata are managed by the host OS,
which already has visibility into application state, including mi-
croarchitectural state. For instance, most recent CPUs offer features
like Intel’s last branch record register (LBR), Intel’s processor trace
(Intel-PT) [30] or Arm’s branch record register (BRB) [10] that allow
collecting application traces.

As Ignite injects branch targets into the BTB, a malicious VM
can use Ignite to create a speculative side channel and extract infor-
mation from other VMs. However, as it is already possible to inject
arbitrary branch targets into the BTB [9] Ignite does not increase
the attack surface. Additionally, Ignite is compatible with side chan-
nel mitigations like Arm’s BTB tagging feature (FEAT_CSV2) [9].
In a CPU featuring BTB tagging, Ignite would use the currently
running VM ID to tag restored BTB entries. In that way, replayed
entries from a malicious VM are not executable by other VMs.

5 METHODOLOGY
5.1 Workloads
We use 20 distinct serverless functions from the vSwarm benchmark
suite [42] listed in Table 1. The functions feature three different
languages/runtimes: Python, NodeJS and Go. In both our hardware
experiments and simulation we use the same software stack and
the same version of function images (Ubuntu 20.04 with Linux
kernel version v5.4 and Docker version 20.10 as container host).
The function container instance is pinned to a core isolated from
the OS scheduler. A client for driving the invocations is pinned to
other cores. Before measuring, the function is invoked 20 000 times
to warm up the runtimes of function containers7.

5.2 Hardware Infrastructure
For the hardware studies, we rent a r650 server node in the Cloud-
Lab cluster at Clemson University, South Carolina [21]. The r650
instances implement a 3rd Gen. Intel Xeon Ice Lake (dual socket
36-core Intel Xeon Platinum 8360Y) running at 2.4 GHz [29]. Each
core features a private 32 KiB L1-I cache, a 48 KiB L1-D and 1.25 MiB
L2 cache. All cores share a 54 MiB L3 cache per NUMA node and
can access 256 GiB DDR4 DRAM. SMT is disabled as done in pro-
duction [4, 56].

7We empirically found that 20 000 invocations is sufficient for NodeJS’s JIT engine to
perform code optimizations for all of our workloads.

Function Abbr. Function Abbr.
Hotel Reservation [24] Online Boutique [26]

Geo Geo-G Currency Curr-N
Profile Prof-G Email Email-P
Rate Rate-G Payment Pay-N
Recommend. RecH-G ProductCatalog ProdL-G
User User-G Shipping Ship-G

Other [7, 38, 39] Recommend. RecO-P
Authentication Auth-P/N/G
Fibonacci Fib-P/N/G
AES AES-P/N/G
Table 1: Serverless functions and their language runtimes
(Abbreviation legend – P: Python, N: NodeJS, G: Go).

Core
Architecture: Ice lake-like, ISA: x86-64, Freq.: 2.6 GHz
Fetch BW 16 bytes / cycle
BP Unit L-TAGE [52]: 64 KiB

Bimodal: 5 KiB
BTB: 12 K entries, 6-way, 12 b tag, 48 b target

Back-end ROB: 353 entries
LSQ: 128 load + 72 store
Scheduler: 160 entries
RF: 280 Int+ 224 FP

Memory Hierarchy
L1-I Cache 32 KiB, 64 B line, 8-way, 1 cycle8, private,

LRU, 10 MSHRs
L1-D Cache 48 KiB, 64 B line, 12-way, 4 cycles, private,

10 MSHRs, LRU
L2 Cache 1280 KiB, 20-way, 13 cycles, private,

LRU, 32 MSHRs
LLC 8MiB, 16-way, 50 cycles, shared,

non-inclusive, 32 MSHRs, 64 store buffers
Memory DDR4 2400MHz, 14 ns RCD, 14 ns RP,

14 ns CL
Table 2: Parameters of the simulated processor.

After warming the function container instance we collect PMU
performance counters using Linux perf [34] for both user and ker-
nel space from 500 consecutive invocations. The effect of interleav-
ing with other functions is modeled by using stress-ng [16] as a
stressor to thrash microarchitectural state of the core running the
function container.

5.3 Simulator Infrastructure
We use gem5 v22.0.0.1 [13, 25, 45], a cycle-approximate full-system
simulator configured to model the Intel Xeon Ice Lake CPU used in
the hardware studies [1, 29]. In light of the fact that industry trends
are toward much larger BTBs than in recent past, we enlarge the
BTB from 5K entries in Ice Lake to 12 K entries as found in the latest
8Since gem5 does not support a micro-op cache, the L1-I cache is configured with the
micro-op cache latency, instead of the L1-I cache latency as described in [28].
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Figure 8: Performance results over next-line prefetcher.

Intel Xeon Sapphire Rapids CPU [8]. We find that overall trends
and conclusions are not affected by this choice. Table 2 summarizes
the modeled parameters.

We create a two-machine simulation setup using the vSwarm-𝜇
framework [43]. The first machine runs a test client that sends
requests via gem5’s Ethernet model to the second machine that
models the detailed Ice Lake CPU. To simulate the effect of inter-
leaving we flush the microarchitectural structures of the simulated
Ice Lake CPU between two invocations and overwrite the bimodal
predictor with a random state.

We evaluate the following prefetchers:
Baseline (NL): Next-line prefetching for instructions and stride
prefetching for data. Used in all configurations below.
FDP: We implement the decoupled front-end (FDP) in gem5’s out-
of-order CPU following industry reports [31]9. FTQ: 32 entries;
branch predictor bandwidth is double the fetch width [48]; branch
predictor uses taken-only history [2, 3].
Boomerang: FDP augmented with the BTB filling mechanism as
described in [41]. 6-cycle pre-decode latency, 16-entry BTB prefetch
buffer.
Confluence: 8 K entry index and a 32K entry history buffer [33].
Instead of modeling virtualized metadata in the LLC, we use ded-
icated structures for index and history buffers with an LLC-like
look-up latency of 50 cycles [1].
Jukebox: 16-entry CRRB and a region size of 1 KiB. For both record
and replay, metadata is limited to 16 KiB each (32 KiB in total).
Prefetched instruction blocks land in L2.
Ignite: 21 bits to encode branch PC (i.e., source) delta, 7 bits to
encode target delta. Replay throttled when >1 K restored BTB
entries have not been accessed. Maximum metadata size: 120 KiB.
Our implementation is on top of FDP, but could equally be used
with Boomerang.

6 EVALUATION
6.1 Performance Analysis
We first study the performance of the various front-end prefetchers
under lukewarm invocations. We evaluate Boomerang, Boomerang
augmented with Jukebox (Boomerang+JB), and Ignite. Because Ig-
nite restores only the BIM component of the CBP, we also consider
a variant of Ignite that restores the TAGE component as well (Ig-
nite+TAGE). Note that the latter configuration may not be feasible,

9The gem5 implementation of FDP has been released and made available for the
research community at https://github.com/dhschall/gem5-fdp/

as there is no known mechanism to efficiently save and restore
TAGE context [57], but it is useful for understanding the opportu-
nity in restoring TAGE.

Figure 8 presents the results of the evaluation, normalized to our
Baseline (NL). As reported in Section 3.1, Boomerang improves per-
formance over NL by 3-16% (12% on average). For Boomerang+JB,
the improvement increases to 20%, on average, over NL.

Ignite achieves a 21-62% (43% on average) speed-up over NL, an
improvement of 3.6x over Boomerang and 2.2x over Boomerang+JB.
The highest speed-ups are observed on functions written in NodeJS,
which tend to be branch-heavy (refer to Figure 2b) and thus have a
high dependence on the BPU. Ignite improves the performance of
these applications by 50-62%. Ignite+TAGE improves performance
by 50%, on average, covering roughly half of the performance dif-
ference between Ignite and the Ideal front-end. We observe Ignite
outperform Jukebox by 2.4x despite both addressing lukewarm
function invocation. Jukebox prefetches only the instruction work-
ing set into the L2 to cover off-chip misses for instructions but
leaves the remaining front-end completely cold. Ignite prefetches
into the L1-I, BTB and BIM. Thus, Ignites covers misses in multiple
front-end structures that are ignored by Jukebox.

6.2 Miss Coverage and Accuracy
We next study Ignite’s ability in covering front-end misses for in-
structions, branch targets and branch direction predictions. As
before, we consider Boomerang, Boomerang+JB, Ignite, and Ig-
nite+TAGE.

L1-I miss coverage: Figure 9a, left, shows MPKI for the various
front-end prefetchers. Ignite reduces L1-I misses by about 2x as
compared to Boomerang and Boomerang+JB. There are two reasons
for Ignite’s strong performance. The primary reason is a much
lower BPU MPKI (discussed below) owing to Ignite’s effective BPU
restoration. This allows the front-end prefetcher (FDP) to stay on
the correct path, thus achieving higher coverage than Boomerang
and Boomerang+JB. The second reason is that Ignite covers more
off-chip misses for instructions than Boomerang.

BTB miss coverage: The center graph in Figure 9a shows Ig-
nite’s efficacy in restoring branches into the BTB. We observe Ignite
is highly effective at eradicating BTB misses. Boomerang achieves a
BTBmiss rate of 11 MPKI (13 MPKI for Boomerang+JB). Meanwhile,
Ignite achieves a BTB miss rate of 1.9 MPKI — an improvement of
over 5x versus prior front-end prefetchers.

Branch miss coverage: As shown in Figure 9a, right, Ignite
reduces the incidence of branchmispredictions by nearly half versus
other front-end prefetchers — from 19 MPKI or more to just over

https://github.com/dhschall/gem5-fdp/
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Figure 9: Ignites miss coverage (a), detailed initialmiss cover-
age (b), and restore accuracy (c). Initial miss coverage shows
Ignite in the front and Boomerang+JB (warm BTB) in the
back.

10 MPKI. Preserving in addition to Ignite the full TAGE prediction
tables (Ignite+TAGE bar) reduce CBP mispredictions to 6.6 MPKI.

As Ignite’s primary objective is to eliminate initial branch mis-
predictions, we analyze its efficacy in more detail. As done in Sec-
tion 3.3, we split initial and subsequent mispredictions for Ignite
and show the results Figure 9b. For ease of comparison, the previous
results (Figure 6) are plotted in the background. We observe Ignite
is effective in covering 67% of the initial mispredictions.

Restore accuracy: Ignite placesmicroarchitectural state into the
L2 cache, BTB and CBP possibly evicting valuable state. Therefore,
we evaluate Ignite’s accuracy in Figure 9c where we show for each
of the three restored structures the fraction of misses covered, not
covered and overpredicted. For L2 and BTB, overpredicted means
entries that were installed by Ignite but never used, and for the CBP,
mispredictions which the BIM causes because Ignite initialized an
entry incorrectly.

We find Ignite has high accuracy in restoring state. On average,
only 1.4% of Ignite’s L2 instruction prefetches and 3.9% of BTB en-
tries that Ignite restores are not useful. Furthermore, Ignite induces
only 6.2% additional mispredictions (while eliminating 46% of the
mispredictions of Boomerang+JB). The high accuracy stems from
the high commonality in the execution of serverless functions.

6.3 Memory Bandwidth
We analyze the amount of memory bandwidth consumed by the
various front-end prefetchers. We consider four sources of memory
bandwidth usage: useful instructions, useless instructions, record
metadata (i.e., metadata streamed to memory), and replay metadata

0 250KiB 500KiB 750KiB
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Boomerang
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Useful Instructions
Useless Instructions

Record Metadata
Replay Metadata

Figure 10: Ignite’s impact on memory bandwidth.
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Figure 11: Comparison of different BIM initialization policies.
wNT: weakly not-taken, (wT): weakly taken.

(metadata streamed from memory). We study the worst-case mem-
ory usage, where record and replay happen simultaneously. Note
that instruction cache blocks include both demand requests and
prefetches both on correct and misspeculated paths.

Figure 10 compares memory bandwidth for NL prefetcher,
Boomerang, Boomerang+JB and Ignite. We observe that 25% of the
overall instruction trafficwith the next-line prefetcher is useless and
is fetched while the front-end is on the wrong path, which happens
due to the cold state of the BPU. Boomerang employs fetch-directed
prefetching; however, owing to the cold BPU, Boomerang (and
the underlying FDP mechanism) exacerbates wrong-path instruc-
tion fetches. As shown in the second bar of Figure 10, Boomerang
more than doubles useless instruction fetches, which translates
to an overall increase in traffic for instructions by 41% over the
next-line prefetcher. Boomerang+JB further increases the memory
traffic by an additional 10% over Boomerang. The reason for the
increase is that Jukebox helps cover more off-chipmisses for instruc-
tions, allowing the front-end to run faster than without Jukebox,
thus fetching more instructions per unit time. However, due to the
cold BPU, most of these are on the wrong execution path. Thus,
Boomerang+JB generates even more useless fetch and prefetch
requests to memory than Boomerang.

Finally, by restoring the content of the BPU, Ignite dramatically
reduces wrong-path instruction accesses. As a result, Ignite uses 24%
less memory bandwidth for instructions than Boomerang (29% less
than Boomerang+JB). However, the reduction in useless memory
bandwidth is partially negated by Ignite’s metadata traffic. Nonethe-
less, even with both record and replay metadata traffic accounted
for, Ignite requires 8.6% less memory bandwidth than Boomerang
and 17% less bandwidth than Boomerang+JB.

6.4 Sensitivity to Bimodal Initialization
We evaluate different BIM initialization policies for Ignite. As our
baseline, we use Ignite to restore only L2 and BTB state but not
to initialize the BIM. Next, we compare our baseline against an
upper bound that fully preserves the BIM state from the previous
invocation. Finally, we compare two configurations in which we
initialize BIM entries together with inserting branches into the BTB
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to a weakly not-taken state (wNT) and a weakly taken (wT) state10.
The latter policy — initializing inserted entries to wT — is used by
Ignite.

In Figure 11, we show speedup (over NL) and the BPU MKPI.
We observe that using Ignite to restore only L2 and BTB state
results in a speedup of 35%. Preserving the entire BIM state across
invocations gains a further 5.5% speedup and a 25%MPKI reduction,
underscoring the importance of a warm BIM state.

The evaluation of different initialization policies reveals that
resetting BIM entries to weakly not-taken degrades the performance
by 3% as compared to a baseline that does not initialize the BIM at
all. In contrast, resetting BIM entries to weakly taken results in a
6% performance boost. The results correlate with our observation
from Section 3.3 that restoring BTB entries is only effective if the
CBP predicts taken. As Ignite fills only branches taken in the last
invocation, it must initialize BIM entries as weakly taken.

Finally, we notice that using a weakly taken policy for Ignite
achieves similar performance as preserving the BIM state. In fact,
in some cases, the weakly taken initialization policy slightly out-
performs preserving the BIM. The reason why Ignite’s BIM ini-
tialization policy may, at times, outperform preserving the BIM
across invocations is that the BIM’s state at the end of an invoca-
tion reflects the effect of the last execution(s) of a given branch.
In contrast, Ignite records the first execution of a branch. Ignite’s
strategy favors branches whose behavior differs between first and
last execution (e.g., branches associated with predicates guarding a
loop). Overall, the study validates Ignite’s design by showing the
importance of initializing the BIM state and demonstrating that
weakly taken is the right initialization policy.

6.5 Temporal Streaming Prefetchers
So far, we have only considered FDP-based front-end prefetchers.
We now examine temporal streaming prefetching (Section 2.4.2)
and demonstrate that the observations made throughout the paper,
including the effect of cold microarchitectural state on front-end
performance, apply to this class of prefetchers as well. We further
show that Ignite is compatible with this class of prefetchers, making
the observations behind Ignite general.

We consider Confluence [33], a state-of-the-art unified temporal
streaming prefetcher discussed in Section 2.4.2. Confluence uses
dedicated metadata to drive instruction prefetching into the L1-
I, where it relies on instruction pre-decoders to extract branches
and insert them into the BTB. See Section 5.3 for configuration
parameters of Confluence.

We evaluate Confluence, Confluence together with Ignite (Con-
fluence+Ignite), and FDP with Ignite (FDP+Ignite); the latter is the
configuration evaluated elsewhere in this section under the name
’Ignite’. Results are presented in Figure 12.

As the figure shows, the general trends presented for Boomerang
(an FDP-style prefetcher) in Figure 3 hold for Confluence. Specifi-
cally, Confluence delivers only a small performance improvement
over NL due to high L1-I and BPU MPKI. Although Confluence
does not rely on fetch-directed prefetching, it is nonetheless highly
sensitive to branch mispredictions, since they require Confluence

10We also evaluated strongly taken/not-taken policies but found no significant differ-
ences compared to weakly taken/not-taken
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Figure 12: Evaluation of Temporal Streaming Prefetchers

to re-index and re-initiate prefetching from a different stream than
the one that was being followed. We thus conclude that the same
limitation found in Section 3.3 for Boomerang applies to Confluence.
While Confluence delivers branch targets to the BPU, the cold CBP
hinders the BTB filling mechanism to become effective.

The figure further demonstrates that Confluences pairs well
with Ignite, which helps avoid off-chip misses for instructions and
restores the state of the BTB and the BIM. As a result, Conflu-
ence+Ignite enjoys a 28% reduction in L1-I misses and 50% reduction
in BPU misses as compared to Confluence.

Finally, we note that FDP+Ignite achieves somewhat better per-
formance than Confluence+Ignite, which we attribute to the fact
that Confluence requires more training time to form sufficiently-
long streams, whereas FDP trains faster, especially with Ignite
restoring the BPU.

7 RELATEDWORK
Serverless: Little work has been done on understanding microar-
chitectural implications of serverless computing. In one previous
study, Shahrad et al. [53] analyzed the performance of five server-
less functions and identified problems including high cold-start
latency and high variability in execution time. The work noted
a high incidence of branch mispredictions upon a function cold
start but did not propose a mitigation. Schall et al. [51] characterise
microarchitectural implications of 20 diverse serverless functions
and identified off-chip instruction misses due to a high degree of
function interleave as a key performance bottleneck.

Mitigating Context switches: Prior research has tackled the issue
of context switches in virtualised systems and proposed techniques
to preserve LLC state across context switches. Ahn et al.[5] con-
trol LLC capacities available for individual virtual machines while
others leverage record-and-replay to prefetch the entire LLC state
upon context switch [17, 60]. The focus of those works is only on
preserving LLC state. Vougioukas et al. address cold branch predic-
tor states due to flushes upon context switches in order to avoid
side-channel attacks [57]. The work proposes a small specialized
predictor that can be quickly restored on a context switch, along
with a buffer that allows retaining the state of that predictor for
a small number of concurrently active applications. In contrast,
Ignite proposes a unified restoration mechanism for the entire core
front-end including the CBP. Notably, Ignite requires no modifi-
cations to the branch predictor organization and does not need to
store any metadata on-chip.

Software techniques: Recent work has proposed specialized in-
structions to prefetch code [12, 36, 46], BTB entries [35] or branch
prediction hints [37]. Each of these techniques requires architec-
tural support and increases code size. Furthermore, prior techniques
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address instruction misses, BTB misses or branch mispredictions in-
dividually. Our work holistically addresses all sources of front-end
misses with no code or ISA modification. Other techniques leverage
profile information to optimize code layout [15, 47, 49]. But doing
so does not help with BTB misses or branch mispredictions.

8 CONCLUSION
Lukewarm invocations compromise performance of serverless func-
tions due to cold microarchitectural state, particularly in the core
front-end. Meanwhile, existing front-end prefetchers show lim-
ited effectiveness on lukewarm invocations because the cold BPU
throws both fetch and prefetch streams off the correct path. In
response, this work introduces Ignite, a comprehensive mechanism
for restoring front-end microarchitectural state recorded during a
previous invocation of a given function. To the best of our knowl-
edge, Ignite is the first approach to restore instructions, BTB and
CBP state using unified metadata. Ignite is enabled by the insight
that the BTB working set provides a good approximation of a pro-
gram’s control flow graph. Ignite records this working set and
uses it to restore the front-end metadata. A detailed evaluation of
Ignite shows that it outperforms state-of-the-art prefetchers and
delivers significant performance gains on lukewarm invocations
by reducing the front-end MPKI.
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