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Cloud Applications: from Monoliths to Serverless

Monolithic app Microservices

Online Shop
Conventional cloud deployments:

* Virtual machines that stay up for long periods of time
e User is billed even when the service is idle

Serverless is big
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Serverless

Serverless cloud deployments:

* Functions are invoked on-demand

* No invocations = no cost &

* > 50% of cloud customers use serverless [Datadog 2022]

... and growing!



Serverless Basics

Datacenter application organized as a collection of stateless functions

* Functions invoked on-demand
* via triggers (e.g., user click) or by another function

* Functions are stateless: facilitates scaling down to zero
e Zero is not possible for monoliths & microservices

« Developers: pay only per invocation (CPU + memory), not idle time ©)
* Key difference from monoliths & microservices!
* Financial incentive to reduce function footprint <f4>

« Cloud providers: high density and utilization at the server level (©) <f7>]

ISCA’22: Lukewarm Serverless Functions 3



Serverless Characteristics on a Server

Unique characteristics:
* Short function execution times: a few ms or less

* Contrast: Linux scheduling quantum: 10-20ms Conventional workloads Serverless workloads
° Small memory footprint: tens Of MB On a server on a server
* Sporadically invoked (seconds or minutes)
[Microsoft Azure @ATC20] Core0 | ««| Coren Core0 |...| Coren
Implication:
* Extreme multi-tenancy: Thousands of functions resident - B IIHIIIEHH.HIHI
on a server Memory Memory

* Huge degree of interleaving between two
invocations of the same function
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What are the implications for microarchitecture!?
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Effect of Interleaving
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Longer inter-arrival times

—> Higher degree of interleaving
—> Higher CPI

Drastic increase in CPI for typical inter-arrival times (IATs)
= Up to 170% CPl increase for IAT > 1s

What causes the slowdown?
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Characterization Methodology

Compare back-to-back to interleaved execution of one function
* Function-under-test runs isolated

* Interleaving modelled by stressor
» Same effectas interleaved execution of co-located functions

Use Top-Down Methodology for analysis

* Machine: Intel Broadwell CPU
(10 cores, SMT disabled, 32KB L1-1/D, 256KB L2/core, 25MB LLC)

* Collect CPU performance counters

Workloads: 20 serverless functions

* Large variety in functionality and runtimes
* |4 function types in three languages
* Including compiled, JIT-ed and interpreted languages
* Publicly available https://github.com/ease-lab/vSwarm
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Back-to-Back Execution
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https://github.com/ease-lab/vSwarm

Performance Implications of Interleaving
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* Interleaving increases the mean CPI by 70%

* Reason: Lukewarm execution

* Function in memory, but no p-arch state on-chip
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Top-Down CPI Analysis
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* Front-end stalls is the largest source of stalls

* 56% of additional stall cycles in interleaved execution come from fetch latenc
Y y

Instruction delivery a critical performance bottleneck for warm invocations
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Instruction Fetch Pain Points
L2 Cache (256KB/core) L3 Cache (25MB)
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* Serverless workloads frequently miss in L2 cache * Almost no L3 instruction misses for back-to-back
* 50+ MPKI, on average execution
* Misses for instructions dominate * Frequent L3 misses for instructions under
* Similar behaviour for both back-to-back and interleaving (18 MPKI)
interleaved * Instructions fetched from main memory > high stall cycles

L3 instruction misses hurt performance under interleaving
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Understand Instruction Misses

Studied instruction traces from 25 consecutive invocations of each function.
Compared instruction footprint & commonality at cache-block granularity across invocations

Two key insights:

I. High commonality across invocations
> 85% of cache blocks are the same in all invocations of the same function

2. Large instruction footprint: 300KB-800KB
* Contrast: L2 cache size: 256 KB

* Deep software stacks result in large amount of code

Takeaways:

* Large instruction footprints > cannot be maintained on-chip under heavy interleaving ()

« Same instructions accessed across invocations ()

Can we exploit the high commonality to improve performance!
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Addressing Cold On-chip Instruction State

Basic ldea:

* Exploit high commonality of function invocations
* Suggest prefetch opportunities

Mechanism:
* Record instruction working set of one invocation

* Restore the instruction working with the next invocation
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Jukebox: I-Prefetcher for Serverless

Jukebox: record-and-replay instruction prefetcher for lukewarm
serverless function invocations

* Record: L2 misses using a spatio-temporal encoding

* Stores records in main memory

* Replay: prefetch the recorded addresses into the L2

* Fully decoupled from the core

Jukebox
* Triggered by function invocation 3

* Operates on virtual addresses

* Not affected by page re-allocation

* Prefetching prepopulates TLB

Jukebox records and replays L2 instruction working sets
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Evaluation Infrastructure

Use gem5 simulator for evaluating Jukebox

* Detailed server node
* Dual core Skylake-like CPU model
« 32KB LI-I/D, IMB L2/core, 8MB L3

* Secondary node for driving invocations.
* Functions run in isolation

* Cycle accurate simulation of the full system
 Exact same software stack as on real hardware
(Ubuntu 20.04, same container images, full gRPC stack)
* First support for containers in gem5
* Publicly available:
https://github.com/ease-lab/vSwarm-u
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Representative infrastructure for studying serverless functions
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https://github.com/ease-lab/vSwarm-u

Jukebox: Performance Improvements

B Interleaved Execution with Jukebox
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Speedup serverless
Jukebox’s recording and replaying of instruction working sets functions by 18%

* Speedup interleaved (lukewarm) execution by 18%, on average
 Consistent for all benchmarks

* Covers > 85% L3 instruction misses
* Effective in covering off-chip instruction misses

* Only 32KB metadata
Jukebox’s idea is simple but very effective
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Summary

Serverless functions present new challenges for modern CPUs

- Lukewarm execution: function in memory, but no p-arch state on-chip

Characterisation reveals a severe front-end bottleneck in lukewarm executions

—> Large instruction footprints cannot be maintained on-chip under heavy function interleaving
—> Frequent off-chip misses for instructions expose the CPU to long-latency stalls

Jukebox: Record-and-replay instruction prefetcher for lukewarm serverless functions

—> Simple and effective solution for cold on-chip instruction state
—> Improves performance by 18% with 32KB of in-memory metadata per instance
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Thank you!
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