Lukewarm Serverless Functions:
Characterization and Optimization

David Schall,

Artemiy Margaritov, Dmitrii Ustiugov,
Andreas Sandberg, Boris Grot

June 22,2022 ISCA’22

Cloud Applications: from Monoliths to Serverless

Monolithic app Microservices

Online Shop
Conventional cloud deployments:

* Virtual machines that stay up for long periods of time
e User is billed even when the service is idle

Serverless is big

ISCA’22: Lukewarm Serverless Functions

Serverless

Serverless cloud deployments:

* Functions are invoked on-demand

* No invocations = no cost &

* > 50% of cloud customers use serverless [Datadog 2022]

... and growing!

Serverless Basics

Datacenter application organized as a collection of stateless functions

* Functions invoked on-demand
* via triggers (e.g., user click) or by another function

* Functions are stateless: facilitates scaling down to zero
e Zero is not possible for monoliths & microservices

« Developers: pay only per invocation (CPU + memory), not idle time ©)
* Key difference from monoliths & microservices!
* Financial incentive to reduce function footprint <f4>

« Cloud providers: high density and utilization at the server level (©) <f7>]

ISCA’22: Lukewarm Serverless Functions 3

Serverless Characteristics on a Server

Unique characteristics:
* Short function execution times: a few ms or less

* Contrast: Linux scheduling quantum: 10-20ms Conventional workloads Serverless workloads
° Small memory footprint: tens Of MB On a server on a server
* Sporadically invoked (seconds or minutes)
[Microsoft Azure @ATC20] Core0 | ««| Coren Core0 |...| Coren
Implication:
* Extreme multi-tenancy: Thousands of functions resident - B IIHIIIEHH.HIHI
on a server Memory Memory

* Huge degree of interleaving between two
invocations of the same function

l Inter-arrival time

& n
< 1 4

b RPN G G G (P P

Execution timeline of one CPU core

What are the implications for microarchitecture!?

v

ISCA’22: Lukewarm Serverless Functions 4

Effect of Interleaving

i Auth Python
150% s

125% A

Normalized CPI

¢ »| Typical IAT

N L 4|

100% +=+"—r———1—T—1—+—"—T1T—"———1————
0 10 100 1000 10000

Inter-arrival time [ms]

Longer inter-arrival times

—> Higher degree of interleaving
—> Higher CPI

Drastic increase in CPI for typical inter-arrival times (IATs)
= Up to 170% CPl increase for IAT > 1s

What causes the slowdown?

ISCA’22: Lukewarm Serverless Functions 5

Characterization Methodology

Compare back-to-back to interleaved execution of one function
* Function-under-test runs isolated

* Interleaving modelled by stressor
» Same effectas interleaved execution of co-located functions

Use Top-Down Methodology for analysis

* Machine: Intel Broadwell CPU
(10 cores, SMT disabled, 32KB L1-1/D, 256KB L2/core, 25MB LLC)

* Collect CPU performance counters

Workloads: 20 serverless functions

* Large variety in functionality and runtimes
* |4 function types in three languages
* Including compiled, JIT-ed and interpreted languages
* Publicly available https://github.com/ease-lab/vSwarm

ISCA’22: Lukewarm Serverless Functions

Back-to-Back Execution

| | || | | (Fonctonexcamng
AEEEEE -

CPU core execution timeline

Interleaved Execution

Function executing
l l l Stressor models

execution of co-
¢ |ocated functions

[
>

CPU core execution timeline

https://github.com/ease-lab/vSwarm

Performance Implications of Interleaving

4.00 - EZZZZ1 Back-to-back] Interleaved|
_3.001
[]
O 2.001 %
a2 717N
1.00{ 77 7 7 2 |7 7
i X ¢ pa pa p G G G >
\0 % \’\9 .\of %r \Qf .\of %r \of e:b‘
Al ?&Y 8 %3’Y?»‘ W Y?@*) >
Python Node JS Golang

* Interleaving increases the mean CPI by 70%

* Reason: Lukewarm execution

* Function in memory, but no p-arch state on-chip

ISCA’22: Lukewarm Serverless Functions 7

Top-Down CPI Analysis

4.00 ; I Retiring [Frontend Bound M Bad Speculation [Backend Bound

_3.001
3 2.00-
1.00
0.00

* Front-end stalls is the largest source of stalls

* 56% of additional stall cycles in interleaved execution come from fetch latenc
Y y

Instruction delivery a critical performance bottleneck for warm invocations

ISCA’22: Lukewarm Serverless Functions 8

Instruction Fetch Pain Points
L2 Cache (256KB/core) L3 Cache (25MB)

D
o

125 I Data I I I Data

[Instructions

AN
<o

Z 100 1 [Instructions v ;
o z o
= =
: 50 3 201
25 % \l] J
014 '”.ﬂ . . Interleaved 0- | | o
TS P 606 exceution R 3 = .= SIS CICRIRS
.\0’ % \Q’ A ’ ’ / / @‘b‘ _\0’ %’ \Q, A ’, ’ A ’ ’ q)‘b‘
TS FFS F °~’§ ¥ [aemn] €& FPF Fos
execution
* Serverless workloads frequently miss in L2 cache * Almost no L3 instruction misses for back-to-back
* 50+ MPKI, on average execution
* Misses for instructions dominate * Frequent L3 misses for instructions under
* Similar behaviour for both back-to-back and interleaving (18 MPKI)
interleaved * Instructions fetched from main memory > high stall cycles

L3 instruction misses hurt performance under interleaving

ISCA’22: Lukewarm Serverless Functions 9

Understand Instruction Misses

Studied instruction traces from 25 consecutive invocations of each function.
Compared instruction footprint & commonality at cache-block granularity across invocations

Two key insights:

I. High commonality across invocations
> 85% of cache blocks are the same in all invocations of the same function

2. Large instruction footprint: 300KB-800KB
* Contrast: L2 cache size: 256 KB

* Deep software stacks result in large amount of code

Takeaways:

* Large instruction footprints > cannot be maintained on-chip under heavy interleaving ()

« Same instructions accessed across invocations ()

Can we exploit the high commonality to improve performance!

ISCA’22: Lukewarm Serverless Functions 10

Addressing Cold On-chip Instruction State

Basic ldea:

* Exploit high commonality of function invocations
* Suggest prefetch opportunities

Mechanism:
* Record instruction working set of one invocation

* Restore the instruction working with the next invocation

]C eoe f

Core

Hierarchy

Execution time

ISCA’22: Lukewarm Serverless Functions

v

Jukebox: I-Prefetcher for Serverless

Jukebox: record-and-replay instruction prefetcher for lukewarm
serverless function invocations

* Record: L2 misses using a spatio-temporal encoding

* Stores records in main memory

* Replay: prefetch the recorded addresses into the L2

* Fully decoupled from the core

Jukebox
* Triggered by function invocation 3

* Operates on virtual addresses

* Not affected by page re-allocation

* Prefetching prepopulates TLB

Jukebox records and replays L2 instruction working sets

ISCA22: Lukewarm Serverless Functions 12

Evaluation Infrastructure

Use gem5 simulator for evaluating Jukebox

* Detailed server node
* Dual core Skylake-like CPU model
« 32KB LI-I/D, IMB L2/core, 8MB L3

* Secondary node for driving invocations.
* Functions run in isolation

* Cycle accurate simulation of the full system
 Exact same software stack as on real hardware
(Ubuntu 20.04, same container images, full gRPC stack)
* First support for containers in gem5
* Publicly available:
https://github.com/ease-lab/vSwarm-u

Driving
node

client -

Memory
Subsystem

[

L3-$

v

Memory

NIC

Ethernet

Representative infrastructure for studying serverless functions

ISCA’22: Lukewarm Serverless Functions

https://github.com/ease-lab/vSwarm-u

Jukebox: Performance Improvements

B Interleaved Execution with Jukebox

-

-

Speedup [%]
—_ DN W9
S

)

A : G G N
\S S X0 & P>
¥ @ < A ?g) P Q&
¥
Speedup serverless
Jukebox’s recording and replaying of instruction working sets functions by 18%

* Speedup interleaved (lukewarm) execution by 18%, on average
 Consistent for all benchmarks

* Covers > 85% L3 instruction misses
* Effective in covering off-chip instruction misses

* Only 32KB metadata
Jukebox’s idea is simple but very effective

ISCA’22: Lukewarm Serverless Functions |4

Summary

Serverless functions present new challenges for modern CPUs

- Lukewarm execution: function in memory, but no p-arch state on-chip

Characterisation reveals a severe front-end bottleneck in lukewarm executions

—> Large instruction footprints cannot be maintained on-chip under heavy function interleaving
—> Frequent off-chip misses for instructions expose the CPU to long-latency stalls

Jukebox: Record-and-replay instruction prefetcher for lukewarm serverless functions

—> Simple and effective solution for cold on-chip instruction state
—> Improves performance by 18% with 32KB of in-memory metadata per instance

ISCA’22: Lukewarm Serverless Functions

Thank you!

Lukewarm Serverless Functions:
Characterization and Optimization

Edinburgh, United Kingdom Edinburgh, United Kingdom

Andreas Sandberg Boris Grot
andreas.sandberg@arm.com boris.grot@ed.ac.uk
Arm Research University of Edinburgh

Cambridge, United Kingdom Edinburgh, United Kingdom

ABSTRACT

David Schall Artemiy Margaritov” Dmitrii Ustiugov”
d.h.schall@sms.ed.ac.uk artemiy.margaritov@huawei.com dmitrii.ustingov@ed.ac.uk
University of Edinburgh Turing Core, Huawei 2012 Labs ETH Zurich

Zurich, Switzerland

Serverless corf
running servi

demand in res
long start-up
providers teng

future invocal
may be thous
executions arg

Ev Sensitivity studies

CCS CONCEPTS
res; Cloud
Extensive characterization ot
for some time] Design details
ction prefetch-

ISCA’22: Lukewarm Serverless Functions

README.md

vSwarm-u: Microarchitectural
Research for Serverless

Build Linux Kernel ‘passing Build Gem5 | passing Create base disk image ||passing Function CI for gem5 Simulator failing

doc [latest | release v0.1.0 w W Follow @ease_lab 109

Serverless g .
mission of Serverless framework (vHive)
generation
challend S€rverless workloads (vSwarm)
sweessd gemb infrastructure (vSwarm-u):
unique cha

https://github.com/ease-lab/

's. The
ext

L with their
orkloads

https://github.com/ease-lab/

