
Lukewarm Serverless Functions:

Characterization and Optimization

David Schall,

Artemiy Margaritov, Dmitrii Ustiugov,

Andreas Sandberg, Boris Grot

June 22, 2022 ISCA’22

2

Cloud Applications: from Monoliths to Serverless

Serverless is big … and growing!
ISCA’22: Lukewarm Serverless Functions

Conventional cloud deployments:

• Virtual machines that stay up for long periods of time

• User is billed even when the service is idle

MicroservicesMonolithic app Serverless

<f2>

<f4>

<f7>

<f5>
<f6>

<f9>

<f1>

<f3>

<f8>

Online Shop

Serverless cloud deployments:

• Functions are invoked on-demand

• No invocations → no cost

• > 50% of cloud customers use serverless [Datadog 2022]

3

Datacenter application organized as a collection of stateless functions

• Functions invoked on-demand

• via triggers (e.g., user click) or by another function

• Functions are stateless: facilitates scaling down to zero
• Zero is not possible for monoliths & microservices

• Developers: pay only per invocation (CPU + memory), not idle time 🙂
• Key difference from monoliths & microservices!

• Financial incentive to reduce function footprint

• Cloud providers: high density and utilization at the server level 🙂

Serverless Basics

<f2>

<f4>

<f7>

<f5>

<f6>

<f9>

<f1>

<f3>

<f8>

<f4><f4>

<f7>

<f5>

ISCA’22: Lukewarm Serverless Functions

4

Unique characteristics:
• Short function execution times: a few ms or less
• Contrast: Linux scheduling quantum: 10-20ms

• Small memory footprint: tens of MB

• Sporadically invoked (seconds or minutes)
[Microsoft Azure @ATC20]

Implication:
• Extreme multi-tenancy: Thousands of functions resident

on a server

• Huge degree of interleaving between two

invocations of the same function

Serverless Characteristics on a Server

What are the implications for microarchitecture?
ISCA’22: Lukewarm Serverless Functions

f

Execution timeline of one CPU core

fffff fffff fffff ffff fffff ffff fffffffff

Inter-arrival time

Memory

Core 0 Core n

App 1 App 2

…

Memory

Core 0 Core n

Conventional workloads

on a server

Serverless workloads

on a server

f f f ff f f f f f f f f f f f

…

5

Longer inter-arrival times
→ Higher degree of interleaving

→ Higher CPI

Drastic increase in CPI for typical inter-arrival times (IATs)
→ Up to 170% CPI increase for IAT > 1s

Effect of Interleaving

What causes the slowdown?

Typical IAT

ISCA’22: Lukewarm Serverless Functions

6

Compare back-to-back to interleaved execution of one function
• Function-under-test runs isolated

• Interleaving modelled by stressor
• Same effect as interleaved execution of co-located functions

Use Top-Down Methodology for analysis
• Machine: Intel Broadwell CPU

(10 cores, SMT disabled, 32KB L1-I/D, 256KB L2/core, 25MB LLC)

• Collect CPU performance counters

Workloads: 20 serverless functions
• Large variety in functionality and runtimes

• 14 function types in three languages

• Including compiled, JIT-ed and interpreted languages

• Publicly available https://github.com/ease-lab/vSwarm

Characterization Methodology

f

Function executing

CPU core execution timeline

f f f f

Back-to-Back Execution

…

f

Interleaved Execution

…

CPU core execution timeline

f f

Stressor models

execution of co-

located functions

Function executing

f

ISCA’22: Lukewarm Serverless Functions

https://github.com/ease-lab/vSwarm

7

• Interleaving increases the mean CPI by 70%

• Reason: Lukewarm execution

• Function in memory, but no µ-arch state on-chip

Performance Implications of Interleaving

Python Node JS Golang

ISCA’22: Lukewarm Serverless Functions

8

• Front-end stalls is the largest source of stalls

• 56% of additional stall cycles in interleaved execution come from fetch latency

Top-Down CPI Analysis

Instruction delivery a critical performance bottleneck for warm invocations
ISCA’22: Lukewarm Serverless Functions

9

Instruction Fetch Pain Points

L3 instruction misses hurt performance under interleaving

L2 Cache (256KB/core)

• Serverless workloads frequently miss in L2 cache
• 50+ MPKI, on average

• Misses for instructions dominate

• Similar behaviour for both back-to-back and

interleaved

L3 Cache (25MB)

• Almost no L3 instruction misses for back-to-back

execution

• Frequent L3 misses for instructions under

interleaving (18 MPKI)
• Instructions fetched from main memory → high stall cycles

ISCA’22: Lukewarm Serverless Functions

Back-to-back

execution

Interleaved

execution

Studied instruction traces from 25 consecutive invocations of each function.

Compared instruction footprint & commonality at cache-block granularity across invocations

Two key insights:

1. High commonality across invocations

• > 85% of cache blocks are the same in all invocations of the same function

2. Large instruction footprint: 300KB-800KB

• Contrast: L2 cache size: 256 KB

• Deep software stacks result in large amount of code

Takeaways:

• Large instruction footprints → cannot be maintained on-chip under heavy interleaving ☹️

• Same instructions accessed across invocations 🙂

10

Understand Instruction Misses

Can we exploit the high commonality to improve performance?
ISCA’22: Lukewarm Serverless Functions

11

Basic Idea:

• Exploit high commonality of function invocations

• Suggest prefetch opportunities

Mechanism:

• Record instruction working set of one invocation

• Restore the instruction working with the next invocation

Addressing Cold On-chip Instruction State

Execution time

f ff f f

Cache

Hierarchy

Core

…f

Inst

ffffff

ISCA’22: Lukewarm Serverless Functions

Memory

Jukebox: record-and-replay instruction prefetcher for lukewarm

serverless function invocations

• Record: L2 misses using a spatio-temporal encoding

• Stores records in main memory

• Replay: prefetch the recorded addresses into the L2

• Fully decoupled from the core

• Triggered by function invocation

• Operates on virtual addresses

• Not affected by page re-allocation

• Prefetching prepopulates TLB

12

Jukebox: I-Prefetcher for Serverless

Jukebox records and replays L2 instruction working sets

LLC

L2-$

D-$I-$

Core

Inst

ISCA’22: Lukewarm Serverless Functions

Jukebox

Detailed nodeDriving

node

Core

Core Core

13

Use gem5 simulator for evaluating Jukebox

• Detailed server node
• Dual core Skylake-like CPU model

• 32KB L1-I/D, 1MB L2/core, 8MB L3

• Secondary node for driving invocations.

• Functions run in isolation

• Cycle accurate simulation of the full system

• Exact same software stack as on real hardware

(Ubuntu 20.04, same container images, full gRPC stack)

• First support for containers in gem5

• Publicly available:

https://github.com/ease-lab/vSwarm-u

Evaluation Infrastructure

Representative infrastructure for studying serverless functions

NIC

NIC

Ethernet

JB L2-$

D-$I-$

L2-$

D-$I-$

client

Memory

Subsystem

Memory

L3-$

ISCA’22: Lukewarm Serverless Functions

f

https://github.com/ease-lab/vSwarm-u

14

Jukebox’s recording and replaying of instruction working sets

• Speedup interleaved (lukewarm) execution by 18%, on average
• Consistent for all benchmarks

• Covers > 85% L3 instruction misses
• Effective in covering off-chip instruction misses

• Only 32KB metadata

Jukebox: Performance Improvements

Jukebox’s idea is simple but very effective
ISCA’22: Lukewarm Serverless Functions

Speedup serverless

functions by 18%

15

Serverless functions present new challenges for modern CPUs

→ Lukewarm execution: function in memory, but no µ-arch state on-chip

Characterisation reveals a severe front-end bottleneck in lukewarm executions

→ Large instruction footprints cannot be maintained on-chip under heavy function interleaving

→ Frequent off-chip misses for instructions expose the CPU to long-latency stalls

Jukebox: Record-and-replay instruction prefetcher for lukewarm serverless functions

→ Simple and effective solution for cold on-chip instruction state

→ Improves performance by 18% with 32KB of in-memory metadata per instance

Summary

ISCA’22: Lukewarm Serverless Functions

16

Thank you!

Extensive characterization

Design details

Sensitivity studies

Serverless framework (vHive)

Serverless workloads (vSwarm)

gem5 infrastructure (vSwarm-u):

https://github.com/ease-lab/

ISCA’22: Lukewarm Serverless Functions

https://github.com/ease-lab/

