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Abstract—Branch prediction is crucial for modern high-
performance processors, ensuring efficient execution by anticipat-
ing branch outcomes. Despite decades of research, achieving high
prediction accuracy remains challenging, particularly in server
workloads, where large branch working sets and hard-to-predict
branches are prevalent. State-of-the-art predictors, such as the
64KB TAGE-SC-L design, experience high misprediction rates on
server workloads, with 3.6-20% (9.2% on average) of execution
cycles wasted due to mispredictions on a modern server CPU.
While more predictor capacity can reduce mispredictions by up
to 36% in the limit (with infinite storage), realizing meaningful
gains in practice requires hundreds of KBs of storage, which is
infeasible for a latency- and area-sensitive in-core predictor.

This work introduces the Last-Level Branch Predictor (LLBP),
a microarchitectural approach that improves branch predic-
tion accuracy through additional high-capacity storage backing
the baseline TAGE predictor. LLBP leverages the insight that
branches requiring longer histories tend to span multiple program
contexts – notionally, function calls. A given program context,
which can be thought of as a call chain, localizes the branch
prediction state, affording a small number of patterns per context
even for hard-to-predict branches. LLBP predicts upcoming
contexts and prefetches the associated branch metadata into
a small in-core buffer, which is accessed in parallel with the
unmodified TAGE predictor. Our results show that a 512KB
LLBP backing 64KB TAGE-SC-L reduces MPKI by 0.5-25.9%
(avg. 8.9%) over the baseline without LLBP.

I. INTRODUCTION

Branch prediction is a key enabling technology for today’s
high-performance CPUs. By anticipating branches and predict-
ing their outcome, the branch predictor helps ensure that the
front-end stays on the correct execution path and continues to
fetch instructions even though a given branch may be resolved
tens of cycles after it has been fetched. Improving branch
prediction performance not only can improve the performance
of existing processor designs but also opens the door to more
aggressive microarchitectures with potentially thousands of
instructions in flight [27]. Such large-window processors are
only possible with highly accurate branch prediction since
each misprediction incurs a pipeline flush.

Despite decades of research, achieving high prediction
accuracy remains a challenge, particularly in the server do-
main [25]. Modern server workloads pose difficulties for
effective prediction due to their large branch working set
and the existence of inherently hard-to-predict branches [27].
Branches that are difficult to predict may require the predictor
to track many instances of such a branch to improve accuracy.
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When coupled with a large branch working set, the branch
predictor’s storage structures become overwhelmed by the
amount of branch content they need to maintain, leading to
costly mispredictions.

We find that the state-of-the-art branch predictor design
(64KB TAGE-SC-L) has an MPKI of 0.29-6.4 (avg. 2.91) on
a suite of diverse server workloads. When these workloads
are run on a recent Intel Sapphire Rapids CPU, we measure
3.6-20% (avg. 9.2%) of all execution cycles to be wasted on
mispredictions, indicating that branch prediction is, indeed, a
performance bottleneck.

Today’s state-of-the-art branch predictors tend to be deriva-
tives of the TAGE design, which uses an ensemble of tables,
each table making predictions using geometrically-longer his-
tories over the preceding table [29], [38]–[40]. A representa-
tive configuration in a high-end processor may use up to 30
tables and 64KiB of storage [42]. A branch is first inserted
into a table using a very short history; however, if the branch
is mispredicted, the branch is inserted into the next table with
a longer history. Thus, a given branch may have instances
present in multiple tables, and — for hard-to-predict branches
— many patterns (corresponding to different histories) may
need to be stored per table. We find that while the average
number of histories per branch is 14, the most-mispredicted
branches necessitate over 100, and up to thousands, of patterns.

One direct way to improve branch prediction performance is
to simply increase predictor capacities. Indeed, we observe that
a TAGE-SC-L predictor with infinite capacity available for its
TAGE tables can reduce branch MPKI by 36.5%, on average,
for the studied server workloads. However, for finite-capacity
predictors, we find that accuracy improves very slowly as
predictor size is increased from a well-provisioned baseline
(e.g., 64KB). For instance, doubling the TAGE capacity from
64KB to 128KB reduces MPKI by a mere 6.4%.

Given such a trend, naively scaling up the capacity of a prac-
tical TAGE-based predictor is not a viable option given that the
branch predictor is latency-, area- and power-constrained. Prior
work has proposed virtualizing TAGE to enable a hierarchical
predictor through a concept of paging, whereby all of the
histories associated with a given region of code are colocated
in a fixed-size region, and pages are moved between branch
predictor levels as needed [34], [35]. Problematically, fixed-
size pages cannot accommodate the large skew in the number
of patterns per branch, necessarily forcing a painful compro-
mise between coverage and storage. In order to accommodate
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branches with a large number of patterns, the page size must be
large; however, given that the vast majority of branches require
a small number of patterns, large pages waste capacity. Our
studies indicate that nearly a third of the opportunity offered
by infinite-capacity TAGE comes from improved accuracy on
just the top 0.8% most-mispredicted branches, which require
numerous histories. Moreover, because of the high storage cost
and the bandwidth overhead associated with a paged branch
predictor, prior work concluded that a practical design can
page only one TAGE table (out of 30 in a state-of-the-art
design) [35].

The only work targeting branch predictor performance in
the context of server workloads proposed a cross-layer solution
combining costly off-line profiling and analysis, novel circuits
for prediction, and ISA support [25]. While shown to be
effective in reducing branch mispredictions, the proposal is
highly invasive due to the required cross-layer support.

In this work, we introduce the Last-Level Branch Predic-
tor (LLBP), a purely microarchitectural approach to improve
branch prediction accuracy through additional storage capacity
in the form of a new predictor level. Our work tackles the key
challenges in designing an effective branch predictor hierarchy,
which includes the ability to accommodate a large skew in the
number of patterns per branch, the bandwidth associated with
transferring patterns between the levels of the branch predictor,
and the timeliness of accessing the new (large-but-slow) level.

LLBP is enabled by a new insight into branch behavior
based on the observation that branches that require a longer
history length tend to span multiple program contexts (e.g.,
function calls). Program contexts can be represented as a
sequence of unconditional branches; e.g., jumps, calls, returns.
Our insight is that for branches that require many histories, a
program context can be used to localize the branch so that
only a small number of patterns need to be maintained per
context. For instance, with a context depth of 32, 95% of all
branches require just nine patterns or fewer per context.

Leveraging this insight, LLBP deploys large-capacity stor-
age backing an unmodified TAGE-based predictor. Internally,
LLBP is organized into small regions, each corresponding to
a unique global context and storing a handful of patterns
associated with that context. LLBP is accessed via a per-
core context directory, which is indexed by a hash of the
global context. A core-side buffer stores the branch patterns
associated with the current and recently-accessed contexts.
The buffer is accessed in parallel with the baseline TAGE
predictor, and the longest pattern among the two predictors is
used to make the final prediction. Finally, in order to avoid
accessing LLBP in the latency-critical prediction path, LLBP
uses storage-free context prediction to anticipate upcoming
contexts and prefetch the associated patterns.

To summarize our contributions:

• We corroborate prior work by showing that server workloads
have a high branch prediction MPKI of 0.15-6.3 (avg. 2.53).
On a contemporary server, 3.6-20% (avg. 9.2%) of all
execution cycles are wasted due to branch mispredictions.
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Fig. 1: Execution cycles wasted due to conditional branch
mispredictions.

• We find that branch predictor accuracy can be improved
by up to 36.5%, on average, through additional storage
capacity. However, significant amounts of additional storage
are needed to realize meaningful gains. Moreover, the
additional storage must be able to accommodate the wide
distribution in the number of patterns per branch.

• We demonstrate that program context (e.g., function call
sequence) can be used to localize a small set of patterns
needed to predict a given branch instance, even for branches
that need a large number of patterns for high prediction
accuracy.

• We introduce the Last-Level Branch Predictor (LLBP),
a new microarchitectural approach for improving branch
prediction accuracy using program contexts. LLBP features
high-capacity secondary storage backing the baseline TAGE
predictor. LLBP tracks a small number of patterns per
program context, which can be prefetched to the core
through storage-free context prediction. A 512KB LLBP
backing 64KB TAGE-SC-L reduces branch MPKI by 0.5-
25.9% (avg. 8.9%) over a baseline without LLBP.

II. MOTIVATION

A. Branch Prediction on a Modern CPU

Modern high-performance processors feature deep and wide
pipelines and enable out-of-order execution across hundreds of
instructions [4], [14], [37], [53]. Deep speculation supported
by a highly-accurate branch predictor is vital for enabling such
aggressive designs by ensuring that the processor remains on
the correct path and the pipeline stays busy. A single mispre-
dicted branch can take multiple tens of cycles to detect and,
correspondingly, waste the work of hundreds of subsequently
fetched instructions, ultimately degrading performance, wast-
ing energy and increasing carbon footprint [5], [23].

To understand the importance of branch prediction on the
performance of a modern CPU, we conducted experiments on
a recent Intel Sapphire Rapids server using a set of repre-
sentative contemporary server workloads. Our workloads and
setup are detailed in Section VI. We collect CPU performance
metrics from the loaded server and categorize execution cycles
akin to Intel’s Top-Down methodology [55]. We are interested
in how many of the executed cycles are wasted because the
branch predictor mispredicted the direction of a conditional
branch.

Figure 1 presents the results of this study and shows 3.6-
20% (9.2% on average) of the overall execution cycles are
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Fig. 2: Branch Mispredictions Per Kilo-Instructions (MPKI) for different configurations of TAGE-SC-L.

wasted because of conditional branch mispredictions. The
results reveal that branch mispredictions present a major
performance bottleneck and a significant source of inefficiency,
even for the latest generation high-performance server CPU.

B. State-of-the-art in Branch Prediction

To date, TAgged GEometric history length (TAGE) [29],
[38]–[40], [42], [47] is considered the most accurate branch
prediction algorithm [27]. TAGE is the winner of the last
four championships [30]–[32], [43] on branch prediction, and
variants of TAGE are implemented in modern commercial
CPU’s [1], [19], [33]. It is, therefore, the focus of this work.

TAGE is based on prediction by partial matching
(PPM) [29] and identifies correlations by comparing patterns
in global history with previously observed patterns. A pattern
is a specific path of control flow transitions (branches) leading
to a branch. TAGE uses multiple predictor tables Ti, each
containing patterns with different, geometrically increasing
lengths of global history. A state-of-the-art TAGE implemen-
tation uses up to 30 prediction tables, with the longest history
length of up to 3000 bits [42]. A table entry consists of a tag,
a signed prediction counter, and a useful bit. The sign of the
prediction counter determines the predicted direction and the
useful bit guides replacement.

To match a pattern (i.e., to make predictions), a hash
function is used to compress the branch address (PC) and the
corresponding global history of a table into a table index and
a tag to match. When the tag matches, the prediction counter
determines the likely direction based on previous occurrences
of the same pattern. In case of multiple pattern matches,
the pattern with the longest history determines the prediction
(referred to as provider), and if none of the tags match, an
untagged bimodal table (BIM) is used as a fall-back. If the
prediction from a matched pattern was wrong, TAGE creates
a new pattern with a longer history length.

To recycle unused patterns, TAGE uses the useful bit to
determine a pattern’s usefulness. A pattern is identified as
“useful” if the provider was correct and the alternative pre-
diction, a matching pattern with a shorter history or the BIM,
was incorrect. Conversely, if two patterns provided a correct
prediction, the pattern using a longer history is not needed and
its useful bit is cleared.

In the latest version, 64KiB TAGE-SC-L, the core TAGE
predictor is augmented with two auxiliary components to
improve its accuracy. The first is the statistical corrector
for hard-to-predict and statistically biased branches, and the
second is the loop predictor for predicting loop exits.

C. TAGE in the Limit

Because prior research has shown that more capacity gen-
erally improves prediction accuracy [20], [21], [25], [41], we
ask in this section; can the accuracy of TAGE, as the most
accurate and practicality-proven branch predictor algorithm to
date be improved by providing it with more capacity.

We use ChampSim [15] to study the same workloads as
in Section II-A and, additionally, a set of production traces
provided by Google [11]. Section VI details our experimental
methods.

As our baseline, we use the winner of the latest branch
prediction championship, 64KiB TAGE-SC-L [42], and com-
pare it against a version of the same predictor with unlimited
capacity. To create the unlimited capacity version, we do not
modify the hash functions or increase the number of tables in
TAGE. Instead, we tag each pattern with the branch PC and
allow unbounded associativity. For brevity, we will refer to
the two versions as 64K TSL (the baseline 64KiB TAGE-SC-
L) and Inf TSL (infinite capacity TAGE-SC-L).

To understand whether accuracy gains come from the main
TAGE or the auxiliary predictor components (the statistical
corrector and the loop predictor), we consider one additional
configuration where we only provide unlimited capacity to the
pattern tables in TAGE while keeping the capacity of the aux-
iliary components unmodified. We refer to this configuration
as Inf TAGE.

The comparison is presented in Figure 2 and shows branch
mispredictions per kilo-instructions (MPKI) for the three
evaluated configurations. The results show 64K TSL has a
misprediction ratio of 0.29-6.4 (avg. 2.91) MPKI. The un-
limited version (Inf TSL) reduces mispredictions by 36.5%
to 0.14-4.37 MPKI (avg. 1.55 MPKI), revealing a significant
opportunity in increasing the prediction structures.

We further observe that the Inf TAGE configuration, which
only increases the capacity of the TAGE tables but not the
auxilliary components, captures nearly all of the opportunity
of the Inf TSL configuration, reducing mispredictions by 14-
54% (avg. 31.9%). This represents 87% of the opportunity
offered by Inf TSL, indicating that increasing the capacity of
the TAGE tables holds the biggest opportunity in reducing
branch mispredictions.

D. Understanding the Branch Working Set

We next study TAGE’s working set to gain insights into
which branches benefit most from additional capacity to
subsequently guide our branch predictor optimizations.
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Fig. 3: Mispredictions and the number of useful patterns per
static branch for Tomcat sorted by mispredictions. Mispredic-
tions are normalized to 64K TSL.

We simulate TSL with progressively larger storage budgets
ranging from 64K to 1M, as well as Inf TSL (as described ear-
lier), and trace the number of mispredictions and the number of
unique patterns that provide a useful prediction for individual
static branches. Recall that a pattern is considered useful when
it provides a correct prediction while the alternative prediction
from a shorter matching pattern or the bimodal predictor is
incorrect.

In Figure 3, we present the results for Tomcat, which
exhibits trends representative of the other benchmarks. In both
graphs of the figure, static branches are sorted by the number
of mispredictions in the 64K TSL configuration.

Mispredictions: Figure 3a shows that most mispredictions
come from a relatively small number of branches. Out of
20.5K unique branch PCs executed in this workload, 160
branches (0.8% of the branch working set) are responsible
for 40% of all mispredictions. Our results corroborate similar
findings for SPEC workloads [27], which showed that an
average of 6 branches are responsible for up to 50% of
all mispredictions in a typical workload of SPEC. Note,
however, that SPEC workloads have considerably small branch
working sets (average of 4.4K branches) than our studied
server applications, indicating a similar overall trend but with
a considerably smaller branch footprint than modern server
workloads.

Figure 3a shows that, compared to 64K TSL, Inf TSL
reduces total branch mispredictions by 35%. Roughly a third
of this opportunity (31% of the overall reduction) comes
from reducing the mispredictions associated with the 160
most-mispredicted branches. From this result, we draw two
conclusions. First, to get any meaningful improvement over
64K TSL, it is essential not to ignore these most-mispredicted
branches. And secondly, focusing only on these branches is
equally insufficient, since two-thirds of the opportunity lies

elsewhere.
The additional lines in Figure 3a show TSL configurations

with storage capacities between 64K and Inf. We observe that
mispredictions decrease very slowly with additional predictor
capacity. Doubling the capacity from 64K to 128K reduces
mispredictions by only 6.4%. Further doublings from 256K
to 1M add reductions of 7.1% (256K), 7.3% (512K), and
4.1% (1M) over the previous configuration. These findings
corroborate prior work [27] in demonstrating that significantly
increasing the storage capacity is the primary means to im-
prove TAGE’s accuracy.

Patterns per branch: Figure 3b presents a similarly skewed
distribution for the number of useful patterns per branch.
TAGE requires orders of magnitude more patterns for the
most mispredicted branches compared to the rest. Although
the average number of patterns per branch is 14.13, the 100
most-mispredicted branches have over 100, and up to 9500,
useful patterns per branch. In the following, we will use the
term complex branches to refer to the top most-mispredicted
branches, distinguishing them from the other branches.

Take-away: Increasing the capacity of TAGE can signifi-
cantly reduce branch mispredictions, including for the most-
mispredicted branches. However, a capacity increase by mul-
tiple factors is needed to get meaningful reductions.

The branch predictor working set is highly skewed, with
the most-mispredicted branches requiring one or more orders
of magnitude more useful patterns for accurate prediction as
compared to the rest of the branches.

III. JACKING UP THE BRANCH PREDICTOR

In order to accommodate a large branch working set with
an associated massive number of patterns, it may be tempting
to simply scale up the TAGE predictor. A naı̈ve approach to
doing so would be to simply scale-up the TAGE predictor’s
capacity. Another option is to create a hierarchical TAGE
design where the recently-used patterns are stored in a small-
and-fast predictor and less-recently-used patterns are in a
large-but-slow structure. In this section, we show that both
options are unsatisfactory.

A. Up-scaling TAGE

The naı̈ve way to provide more storage is to increase the
sizes of the prediction tables in TAGE. However, this comes
at the cost of increased latency and energy consumption.

Since the branch predictor is on the front-end’s critical path,
predictions need to have a low latency to avoid adversely
impacting performance [21], [22]. Due to the high clock
frequencies and the complexity of modern predictors, today’s
sophisticated branch predictors cannot provide predictions in
a single cycle [1], [24], [46]. Instead, they use a scheme
called overriding where a fast but low-confidence predictor
provides an early prediction that is confirmed or disagreed by
a more accurate, but larger and slower, predictor a few cycles
later [12], [33], [57].

While overriding can help to reduce the gap between latency
and accuracy, it has fundamental limits [22]. As the size
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of the predictor increases, its latency also increases, which
reduces the benefit of more accurate prediction. There exists
a point where the higher accuracy provided by the larger
design fails to outweigh the associated latency penalty [21].
For example, Jimenez [21] demonstrated that there are cases
where a 512KiB predictor achieves 11% lower IPC than the
same predictor with only 32KiB when accounting for latencies.

In addition to an increased latency, larger predictor struc-
tures consume more energy. Using CACTI [6], we estimate
that increasing the size of TAGE by 8x would increase its
energy draw by over 4.5x (Section VII-D).

Take-away: Naı̈vely up-scaling the structures of TAGE is
not attractive because the benefits of higher branch predictor
accuracy are undermined by the latency and energy penalties
of the larger prediction structures.

B. Hierarchical TAGE

To overcome the trade-offs between capacity, latency, and
energy consumption, computer architects have long been
building hierarchical designs for other structures, such as
caches and BTBs [8], [17], [52]. By exploiting spatial and
temporal locality in the access patterns to instructions and data,
only the currently active part of the working set can be kept
in a small and fast structure that is back-filled from a larger
but slower structure.

However, in contrast to instruction caches or BTB entries,
branch predictor metadata is not purely a function of the
instruction address. Instead, TAGE uses a hash function to
combine branch PC with global branch history of various
lengths to index its predictor tables. This creates two key
challenges to overcome for a hierarchical branch predictor
design: First, the hash function scatters entries for branches
that are close-by in the instruction stream, thus completely
destroying spatial locality among branches. This makes it
challenging to efficiently prefetch groups of branches from
secondary branch storage. Secondly, combining a branch PC
with branch history often leads to multiple patterns per branch.
Our characterization in Section II-D shows massive variance
in the number of patterns per branch, with most branch PCs
having a small number of patterns but some with thousands
of patterns.

Prior work [34], [35] proposed addressing the first challenge
using a paging scheme, depicted in Figure 4. By modifying the
hash function of the table index, patterns from branches within
a region of code are collocated onto a page. Collocated as a

page, patterns can be swapped between the TAGE prediction
table and a larger (virtual) table, creating a hierarchical design.

The problem with such a paging scheme is that it does not
solve the second challenge of high variance in the number
of patterns per branch. In the proposed design, the maximum
number of patterns that can be accommodated for a given
branch is bounded by the page size. If the page size is
kept small, to keep storage affordable, complex branches that
require a large number of patterns to be predictable will be
adversely affected by the storage limit. Conversely, since the
majority of branch PCs require only a handful of patterns
(Section II-D), a very large page size will necessarily incur
a vast storage overhead with most pages being under-utilized.
Because of the high storage cost and the high bandwidth over-
head associated with paging, the proposal suggested applying
paging to only one TAGE table (recall that a state-of-the-art
TAGE design uses up to 30 tables). If all TAGE tables were
to be paged, the storage and bandwidth overheads would be
amplified by a large factor, rendering the scheme impractical.

Take-away: Two challenges impede the design of a hier-
archical branch predictor: (1) The aggressive use of hashing
breaks patterns locality from individual branches. (2) The
highly skewed distribution of patterns across individual branch
PCs renders per-PC paging schemes ill-suited. To enable a vi-
able hierarchical solution, both challenges must be addressed.

IV. INTRODUCING CONTEXTS

To overcome the challenges in designing a hierarchical
branch predictor, namely the highly skewed branch distribution
and the need to exploit spatial locality for efficiency, this work
introduces the notion of a context-sensitive branch predictor
storage. The rest of this section explains the intuition behind
the idea and presents evidence to back-up the intuition. The
subsequent section presents a practical design based on these
concepts.

1) Intuition: Three observations motivate a context-
sensitive branch predictor storage organization:

First, the number of possible patterns for a given branch
increases exponentially as a function of history length. There-
fore, branches with a very large number of patterns must
necessarily use longer histories.

Second, longer history lengths used by TAGE span hundreds
to thousands of branches. These branches likely span multiple
distinct code regions across a number of functions. Transitions
between the code regions take place through jumps, calls
and returns. Collectively, we refer to these as a unconditional
branch (UB) instructions.

Third, a sequence of UB instructions can be used to
accurately identify global program state, which is similar
to a call graph. Whereas a given function may be called
from multiple places in the program, a call graph pinpoints
the actual execution context. Similarly, a sequence of UB
instructions can be thought of as a fingerprint of the current
program state. We call this a program context.

Our hypothesis, stemming from the observations above,
is that, for a given branch having multiple patterns, not
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Fig. 5: Sensitivity on program context size (patterns per con-
text) with increasing depth of previous unconditional branch
instructions W .

all patterns are useful in a given program context. Given a
program context of sufficient depth, it can be used to localize
the branch behavior such that only a small number of patterns
need to be kept to make a prediction within that context. This
is because the program context indirectly encodes the global
(i.e, across code regions) portion of the history. Moreover, the
deeper the program context (i.e., the longer the sequence of
UB instructions), the more expressive it is, and therefore, the
fewer patterns are needed.

2) Validation: To validate the hypothesis, we first evaluated
the useful patterns of the top 10 most-complex branches for
each studied workload and found that those patterns have a
history length of 5-1500 branches (avg. 200). This validates
the first assertion, that branches with many patterns tend to
rely on long histories.

Next, we studied the ratio of conditional to unconditional
branch instructions and found an average of 3.89 conditional
branches between consecutive unconditional branches. Thus,
for instance, a branch using a history length of 200 would
span over 50 unconditional branches, likely corresponding
to a number of unique code regions and functions, thereby
validating the second assertion.

Lastly, we traced the number of useful patterns using
the same method as in Section II-D. However, instead of
counting useful patterns per unique branch, we count per
unique program context formed by hashing the PCs of the
previous W unconditional branches. In this study, we focus
on the top 128 most-mispredicted branches, as these have the
largest number of useful patterns.

The violin plot in Figure 5 presents the results as dis-
tributions of patterns per context. The left-most distribution
represents the baseline without contexts (W = 0). Note that this
is the distribution that a paging scheme [34], [35] must contend
with. As the figure shows, 50% of the top 128 complex
branches have more than 298 patterns per branch. At 95%,
the number of patterns is 2384.

Increasing values of W effectively slice the branch history
space into multiple program contexts, reducing the number
of useful patterns per context by orders of magnitude. For
example, using just two unconditional branches to identify
a context (W = 2), 50% of the contexts have three useful
patterns. At 95% of the distribution, the number of patterns
per context is less than 40 – a reduction of nearly 60x versus
a single-context organization.
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Fig. 6: High-level idea of context-sensitive branch predictor
organization.

Further increasing the context depth brings additional reduc-
tions in the number of patterns per context. At W = 32, 95%
of the contexts have at most nine useful patterns per context.

The results corroborate our hypothesis that patterns exhibit
locality that can be realized through the program context,
expressed as a sequence of UB instructions. Doing so can
be used to limit the number of useful patterns per context to
just a few. We term this capability context locality.

3) Take-Away: Our findings on context locality imply that
program contexts can be used to address both challenges in
designing a hierarchical predictor. That is, branches with a
large number of patterns can be localized such that only a
small number of patterns is needed per context, and at the
same time, a given context is associated with the full set of
patterns needed to make predictions for it.

V. THE LAST-LEVEL BRANCH PREDICTOR

We present the Last-Level Branch Predictor (LLBP), a
large-capacity branch predictor backing a conventional TAGE-
based predictor. LLBP leverages context locality to enable
significant predictor capacity needed to meaningfully improve
the accuracy of the existing branch predictor without com-
promising its prediction latency. LLBP is designed around the
insight that the branch predictor state exhibits inherent locality
stemming from the program control flow, as explained in the
previous section.

Figure 6 presents the high-level design idea. LLBP exploits
context locality to break up the large branch predictor working
set and reorganizes it into fine-grained pattern sets. Each pat-
tern set comprises patterns associated with a specific program
context (loosely corresponding to a function call chain) and is
identified by a global context ID (CID). By leveraging pattern
sets, LLBP uses cost-efficient hardware structures to store
and access the large branch predictor working set at a fine
granularity.

To overcome the longer access latencies associated with
a larger structure, LLBP uses global context information
to precisely identify the pattern sets required for upcoming
contexts. It prefetches the upcoming patterns into a small in-
core structure ahead of time, enabling low-latency predictions.

LLBP sits alongside the baseline TAGE predictor, in a way
extending it. Like TAGE, LLBP stores patterns corresponding
to different history lengths, and both predictors use the same
partial-pattern matching algorithm to make a prediction. The
final prediction is chosen based on the longest matching
history length across both TAGE and LLBP. Optionally, when
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Fig. 7: LLBP architecture. Left: Design overview with the four main components along with the baseline TAGE. Right: Zoomed
view on the prediction path with two pattern matches. Hx: hash of PC and GHR of increasing history length.

the accuracy of TAGE is sufficiently high, LLBP can be
disabled to save power.

A. Design Overview

The left part in Figure 7 provides an overview of LLBP,
which consists of four components supplementing an exiting
64K TSL branch predictor:

The last-level branch predictor (LLBP) is the bulk pattern
set storage array. Each LLBP entry stores the complete pattern
set for a given context. LLBP is optimized for storage density
offers cost-effective storage space for the large working set
needed to achieve highly accurate branch prediction. Due to
the very effective pattern set prefetching, the LLBP can be
optimized for density rather than latency. Moreover, LLBP can
be virtualized into the cache hierarchy or main memory [9],
thus avoiding the need for dedicated storage. We leave this
optimization for future work.

The pattern buffer (PB) holds the pattern set corresponding
to the currently active context and implements the prediction
logic. It can be thought of as a mini-TAGE which maintains the
prediction state and predicts outcomes for the currently active
context. In addition to the pattern set of the currently active
context, the PB caches the pattern sets of N most-recently
accessed contexts. The pattern sets for the upcoming contexts
are prefetched and also placed into the PB.

The rolling context register (RCR) maintains the addresses
of the last unconditional branch instructions to compute the
current context ID (CCID) using a rolling hash (XOR) over
the context window W [54]. The CCID can be thought of as
a fingerprint of the currently running region of code.

The context directory (CD) is used to perform an associative
metadata look-up for a pattern set using its CCID. The
metadata contains a valid bit, tag, a pattern set storage location,
and replacement metadata. The CD is similar to the tag array
in a normal data cache.

B. Making Predictions

LLBP uses the same partial pattern-matching algorithm as
TAGE to make predictions [29]. However, unlike TAGE, which
dynamically allocates storage to patterns, LLBP uses a single
pattern set per context that holds just the set of patterns for that

context. A pattern in LLBP consists of a prediction counter,
a pattern tag, and a history length field. The history length
field determines the length of global history that needs to be
hashed to create the pattern tag1.

The right part of Figure 7 provides a focused view of the
Pattern Buffer (PB) and the prediction path. The PB’s archi-
tecture is similar to TAGE, with all tag matches performed in
parallel and combined using a cascade of multiplexers. LLBP
differs from TAGE by storing multiple history lengths in the
same pattern set (i.e., one line in the PB). The history length
(hist-len) field selects the corresponding hash function (Hx)
for tag matching. Each hash function is computed exactly like
in TAGE by folding the Global History Register (GHR) with
length GHR[0 : Ln] and combining it with the branch PC.

The PB is indexed by the current context ID, which is
updated upon every unconditional branch. As modern CPUs
typically perform one control flow redirection per cycle [1],
[2], the lookup of a pattern set from the PB and pre-selection of
the hash function can be performed off the critical prediction
path for conditional branches.

To make a prediction, the hash functions for all allowed
history lengths are computed in parallel, akin to TAGE. For
each pattern in the current active contexts’ pattern set, the
corresponding hash is selected by the history length field and
compared against the pattern tag. On a match, the sign of the
prediction counter determines the predicted direction. If none
of the tags match, LLBP does not provide a prediction for this
cycle.

Like TAGE, LLBP may encounter multiple pattern matches
during a prediction and must decide which one to use. A
key element of TAGE’s partial pattern-matching algorithm is
the precedence given to the match with the longest history.
This is the rationale behind TAGE’s cascaded design of
multiple tables indexed by progressively increasing history
length hashes, as it implicitly orders the tag matches. In LLBP,
however, patterns with different history lengths are likely to
share a pattern set. To simplify the prediction logic, which is
latency-critical, we ensure that patterns within a pattern set
are stored in descending length order upon allocation. I.e., the

1Just like the baseline TAGE, LLBP uses a folded history register to
compute the hash on the fly [29].
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pattern to the left in the illustration in Figure 7 will always
have a history length shorter or equal to the pattern to the right.
This approach allows us to use the same multiplexer cascade
as TAGE to select the longest matching pattern. Section V-D
explains how the sorted order of patterns by their history
length is maintained when patterns are replaced.

To arbitrate the final prediction between LLBP and the
baseline predictor (TAGE), we compare the history lengths
from LLBP and TAGE. Because LLBP and TAGE use the
same history lengths, a 6-bit adder is sufficient to compare the
table index of the TAGE match with the history length field
of the LLBP match. The comparison is performed in parallel
with the statistical corrector [42] and does not increase the
critical path except for the final 2x1 multiplexer. If LLBP is
matched on a pattern with the same or longer history length
than TAGE, it overrides the baseline prediction.2

C. Prefetching Pattern Sets

In order to access the pattern set for the current context
from the LLBP, the RCR computes a context ID, indexes the
CD, and — if a match is found and not already cached in the
PB — reads the pattern set from LLBP storage. The sequential
accesses to CD and LLBP incur multiple cycles of latency in
the critical path of reading a pattern set. To hide this latency,
it is imperative to fetch the needed patterns from the LLBP
ahead of time. Intuitively, that requires knowing upcoming
contexts, which effectively means predicting them. However,
introducing another layer of prediction for future contexts is
undesirable as it would necessitate additional prediction state
and logic, increasing complexity, along with a potential for
mispredictions.

Instead, LLBP associates the pattern set for the current
context with a past CID, and uses the most-recent CID for
prefetching the upcoming pattern set. Figure 8 illustrates
the idea. The figure shows a simplified view of the RCR,
which comprises a shift register holding the PCs of the most
recently executed unconditional branches. The CID of the
currently active context (CCID), which indexes the PB, does
not include the D most-recently executed UBs (D = 2 in the
figure3). This trick effectively creates a temporal buffer of D
unconditional branches between when the CIDs of upcoming
contexts are known and when they become active, allowing
LLBP to prefetch the upcoming pattern sets. While our sen-
sitivity analysis in Section VII-E shows that the distance of
four unconditional branches is sufficient for hiding the LLBP
access latency, a different configuration and/or physical design
constraints may require a different value for D.

With this organization, the only time the LLBP access
latency may get exposed, and prefetches might arrive late, is in
the first several cycles after a pipeline reset. Thus, if a pattern
set exists for a context right after a mispredicted branch and
it is not already cached in the PB, LLBP will not be able

2We found that overriding both TAGE + SCL prediction is almost exactly
the same as just overriding TAGE and, in some cases, even better.

3In the evaluated design we use a hash window W = 8 UBs and a prefetch
distance D = 4 UBs

PCn-7 PCn-6 PCn-5 PCn-4 PCn-3 PCn-2 PCn-1
PCn

RCR

CCID
D

New
Unconditional

Branch

Prefetch CID

Fig. 8: Simplified view on the rolling context register (RCR)
and the computation of current context ID (CCID) and prefetch
context ID (Prefetch CID) with a hash window W of 6 UBs
and a prefetch distance D of 2 UBs.

to provide a prediction. We study the implications of this in
Section VII-A.

D. Learning Pattern Sets

While TAGE and LLBP operate almost independently for
predictions, the update and training process is more coor-
dinated. Similar to TAGE, only the providing component is
updated. That is, only when LLBP overrides TAGE will the
PB update the providing pattern while TAGE will cancel its
update.

Upon misprediction by the providing predictor (TAGE or
LLBP), LLBP allocates a new pattern with a longer history
than the pattern that led to the incorrect prediction. The
allocation process consists of four steps.

Step 1: This step only happens if the current context is not
tracked by LLBP yet and is skipped otherwise. If no valid
pattern set exists, the current context ID (CCID) is written
into CD and a new pattern set is created in the PB, which
potentially requires evicting an older pattern set. The new PB
entry is then marked as valid.

We found that using LRU to replace pattern sets in the LLBP
is a poor policy choice. Instead, the replacement policy favors
keeping the pattern sets that contain many high-confidence
patterns, which provide useful predictions, and evicting pattern
sets dominated by low-confidence patterns. Analogous to
TAGE, LLBP uses the hysteresis bits in the pattern’s prediction
counter to determine that pattern’s confidence. The number of
high-confidence patterns in a pattern set is tracked using the
bits in the replacement metadata of the CD. Whenever a new
pattern set needs to be inserted into the LLBP, the CD entry
with the lowest number of confident patterns is chosen from
the CD set indexed by the CCID.

Step 2: Given a valid PB entry, the pattern with the least-
confident prediction counter value is replaced. If two patterns
have the same counter value, the lower order pattern (to the
left in the cascade in Figure 7) is selected.

Step 3: The victim pattern’s tag and history length fields
are updated with the new values, and the prediction counter is
set to low-confidence taken/not-taken according to the correct
direction.

Step 4: The pattern set is updated to maintain a sorted order
of history lengths, effectively mimicking the order of tables in
TAGE. Patterns using a shorter history are succeeded in the
pattern set by patterns with a longer history, which allows
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selecting the pattern with the longest history for a prediction
with low logic complexity.

To balance the need for a sorted order with allocation
complexity, LLBP imposes a restriction on where in the pattern
set a pattern may be placed as a function of its history
length. Specifically, four patterns form a bucket, each restricted
to a specific range of consecutive history lengths. Lower-
order buckets are assigned shorter history lengths compared
to higher-order buckets. For instance, the first bucket (patterns
1-4) has history lengths 12-54, the second bucket (patterns
5-8) has history lengths 78-112, and so on.

The bucket organization offers several key advantages. It
simplifies the allocation process by limiting it to a specific
bucket, requiring only four patterns to be sorted by their his-
tory length. Additionally, it significantly reduces multiplexer
complexity and associated delay, while decreasing the storage
cost of the history length field to just two bits. Despite these
simplifications, we observed only a small impact on LLBP’s
prediction accuracy compared to a design allowing any pattern
to use any valid history length.

E. LLBP Details
1) Writebacks: Whenever a valid pattern set is evicted from

the PB, its content is written back to the LLBP in case it was
modified while in the PB.

2) Rollback of LLBP Predictions: Same with any branch
prediction technique, LLBP must be able to support multiple
in-fight predictions and a mechanism to roll back mispredic-
tions [3]. To avoid polluting pattern sets with wrong infor-
mation, LLBP keeps pattern sets that provide a prediction in
the PB until the corresponding branch is resolved and trains
patterns at commit. We found that across all benchmarks,
no more than 32 LLBP predictions are ever in-flight (99.9th
percentile is 12 in-flight predictions), and a PB size of 64 is
sufficient to maintain all corresponding pattern sets.

While updating pattern sets happens at commit, the RCR
must be updated speculatively to ensure timely prefetching.
Rolling back the RCR can done in the same way as for the
folded history registers in TAGE by maintaining a snapshot
of the CCID and a pointer to the head of the RCR in
the checkpoint of a branch [57]. Upon misprediction, the
checkpointed values are used to reset the RCR.

3) Context ID Hash: To create Context IDs (CIDs), we
employ a hash function that shifts each Program Counter (PC)
value by twice its position in the Rolling Context Register
(RCR) before XOR-ing: CID = PCn ⊕ (PCn−1 << 2)⊕ ·· ·⊕
(PCn−W+1 << (2∗D)).
By shifting each PC, we effectively encode its position into
the CID, preventing repeated branch addresses from canceling
each other out. This is especially beneficial for complex
branches within tight loops with repeated addresses by al-
lowing LLBP to create multiple contexts for different loop
iterations.

VI. METHODOLOGY

Workloads We use a set of 14 distinct workloads obtained
from various sources listed in Table I.

Application Description
NodeApp NodeJS online shop webserver
PHPWiki PHP wiki web server
Kafka, Tomcat, Spring Java DaCapo benchmark suite [7]
Finagle-chirper Java Renaissance suite [48]Finagle-HTTP
TPCC, Twitter, Wikipedia Java BenchBase suite [10]
Merced, Charlie, Google traces [11]Delta, Whiskey

TABLE I: Workloads used to evaluate LLBP.

Core 4GHz, 6-way OoO, 512 ROB, 248/122 LQ/SQ
Branch Pred 64KiB TAGE-SC-L
BTB 16K entry, 8-way
Caches 32KiB 8-way L1-I, 48KiB 12-way L1-D (IP-Stride),

2MiB 16-way L2, 8MiB 16-way LLC
Prefetchers Instructions: FDIP, Data: IP-Stride, L2: Next-line
Memory DDR4 3200MHz

TABLE II: Parameters of the simulated processor.

Seven workloads also used by prior work on branch pre-
diction [25] are adopted from three different Java bench-
mark suites [7], [10], [48]. In addition, we implemented
two new workloads running standard web services. NodeApp
implements a shopping website running on a NodeJS web
server [13], and PHPWiki implements MediaWiki website
served by a PHP-FPM content manager [16].

We collect instruction traces from those workloads using
gem5 [28], which allows us to trace both user and kernel
space instructions. Additionally, we utilize instruction traces
provided by Google collected from four of their data center
workloads [11].

Hardware Experiments: Our hardware experiments were
conducted on a SuperServer SYS-121H-TNR [49] server fea-
turing a 4th Gen. Intel Xeon 5418N Processor [18] and 128GB
of DDR5 memory. SMT and frequency scaling are disabled.

Simulator Infrastructure: For simulation, we use Champ-
Sim [15] and configured it with the parameters listed in Ta-
ble II resembling a recent state-of-the-art industry baseline [4],
[52]. The system is warmed-up for 100M instructions to collect
statistics for 200M instructions.

We model the following branch predictor designs4:
64K TSL: Our baseline throughout this work is a 64KiB
TAGE-SC-L [42], the winner of the latest championship on
branch prediction (CBP-5) [32].
512K TSL: Is the same design as 64K TSL, but the number
of table entries is scaled up by a factor of 8 (from 1K entries
to 8K entries per table).
Inf TSL: 64K TSL design with an unbounded capacity.
We do not increase the tags and indices widths to isolate
the performance gains due to additional capacity from the
algorithmic gain due to higher entropy in the hash functions.
Instead, we tag each pattern with the branch PC and allow

4The source code of the branch predictor models and the traces are available
at https://github.com/dhschall/LLBP
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Fig. 9: Branch misprediction reduction over 64K TSL. Original MPKI shown in Figure 2.

unbounded associativity. For the statistical corrector and loop
predictor, we increased all tables to 2M entries.
LLBP: Our proposal, LLBP, combined with a 64K TSL as the
baseline predictor.

We use empirical studies across all workloads to determine
the following parameters for LLBP: One pattern consists of
a 3-bit prediction counter, a 13-bit pattern tag, and 2 bits
for history length, equal to 18 bits per pattern. A pattern
set comprises 16 patterns grouped in four buckets of four
patterns each, for a total of 288 bits. While 64K TSL uses
21 different history lengths, LLBP uses only 16 of those split
across the four buckets (Section Section V-D). We empirically
found that using history lengths 12, 26, 54, 54*, 78, 78*, 112,
112*, 161, 161*, 232, 336, 482, 695, 1444, 3000 provides the
best performance. The histories marked with the asterisk use
the same length as the previous history but a modified hash
function in analogy to 64K TSL [42].

The CD and LLBP can hold 14k pattern sets. The LLBP
is directly mapped, while the CD is a 7-way set associative.
A pattern set is identified by a 14-bit context ID (CCID). The
11 least-significant bits are used as a set index in the CD. The
remaining 3 bits are used as CD tag. A 2-bit counter is used
to replace pattern sets and stored together with the tag in the
CD. The total capacity is 8.75KiB for the CD and 504KiB for
LLBP. The PB caches the 64 most recent pattern sets and is
4-way set-associative with LRU replacement. Its storage cost
is 2.25KiB.

The CCID is computed by hashing W = 8 unconditional
branches using an XOR function after ignoring D = 4 most
recently executed unconditional branches.

We model a prefetch delay of 6 cycles to cover the
sequential accesses of CD and LLBP, which is based on
CACTI (Section VII-D) plus one additional cycle for the logic
delay. After a misprediction (BTB miss and misprediction),
all in-flight prefetches get squashed before LLBP restarts
prefetching.
LLBP-0Lat: LLBP configured with a zero cycle prefetch delay
used to quantify the impact of late prefetches.

VII. EVALUATION

A. Prediction Accuracy

We first evaluate LLBP’s performance in reducing branch
mispredictions. We compare LLBP against a 512K TSL,
representing a TAGE-SC-L configuration with approximately
the same storage budget as LLBP. Note that the latter con-
figuration is not feasible in a practical design due to the
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Fig. 10: LLBP’s speedup over 64K TSL

high latency penalties associated with the massive predictor
structure. Instead, we use it as a benchmark to compare against
due to its proven accuracy and storage efficiency, which have
been carefully tuned over the past 20 years. To understand the
upper bound of LLBP without the impact of late prefetches
after a pipeline reset, we also consider a configuration without
access delays to LLBP’s structures (LLBP-0Lat).

Figure 9 presents branch MPKI reduction for all 14 bench-
marks normalized to the 64K TSL baseline. We observe
that LLBP archives a substantial reduction of branch mis-
predictions (MPKI) by 0.5-25.9% (avg. 8.9%). The highest
MPKI reduction is achieved for NodeApp (25.9%) and Merced
(13.8%).

LLBP-0Lat improves branch prediction accuracy by 0.7-
26.6% (avg. 9.9%) over the baseline. Thus, the realistic LLBP
configuration is within 90% of the ideal configuration with no
access delay, demonstrating that LLBP’s prefetching technique
can effectively hide access latencies most of the time. LLBP’s
prefetching is least effective for PhPWiki, reaching only 66%
of the ideal LLBP-0Lat. We found that PhPWiki suffers from
an exceptionally high misprediction rate for indirect calls;
these flush the pipeline and reset LLBP’s prefetcher, thus
reducing its effectiveness.

The 512K TSL reduces mispredictions by 12.5-45.9% (avg.
27.3%), outperforming LLBP by over 3x, on average. While
the massive TSL design is not practical, the result does indicate
a significant opportunity to improve LLBP, leaving the door
open to future work to optimize the design similar to how TSL
has been optimized over many generations.

B. Speedup

We evaluate LLBP’s speedup over the 64K TSL baseline,
achieved through increased branch prediction accuracy. We
compare LLBP and LLBP-0Lat against the unrealistic but
approximately equally sized 512K TSL. Additionally, we
consider a perfect conditional branch predictor to establish an
upper bound for branch prediction performance.
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Fig. 11: LLBP’s average read and write traffic across all
workloads compared to the L1-I miss traffic

Figure 10 presents the results. LLBP achieves a 0.05-2.2%
performance improvement over the baseline, with an average
improvement of 0.63%. LLBP-0Lat’s slightly higher accuracy
translates into a 0.71% average speedup.

LLBP achieves 50% of the speedup observed with the
512K TSL, which improves performance by 1.26% on average.
Moreover, LLBP reaches 17.5% of the performance achieved
by a perfect branch predictor, showing an average speedup of
3.6%5.

C. Transfer Bandwidth

Next, we study the communication bandwidth between the
LLBP and the pattern buffer. We evaluate pattern set reads and
writes, with pattern buffer (PB) sizes ranging from 16 to 256
entries. For each LLBP read/write, 288 bits are transferred.

Figure 11 shows the average results across all benchmarks,
plotting bits transferred per instruction. We observe that the
LLBP’s read bandwidth is, on average, 9.9 bits per instruction
for a PB with 16 pattern sets. Writing back modified or newly
created pattern sets incurs an additional bandwidth of 2.2 bits
per instruction. Thus, the writeback traffic is about 20% of the
read traffic, resulting in an overall bandwidth of 12.1 bits per
instruction for the LLBP. With a 64-entry PB, the combined
read and write traffic bandwidth drops by 18.9% to 9.9 bits
per instruction, and a 256-entry PB further brings the total
bandwidth below one byte per instruction.

We chose the 64-entry PB as it represents a trade-off
between hardware consumption and bandwidth reduction. Its
size is 2.25KiB.

We put these numbers into perspective by comparing to the
bandwidth between the L1-I cache and the L2 cache. For each
L1-I miss, 512 bits are transferred. Note that the L1-I traffic
includes both demand and prefetch requests. We observe that
with the 64-entry PB, LLBP’s read bandwidth is 8.6 bits per
instruction, about 41% lower than the traffic between the L1
instruction cache and the L2 cache.

D. Latency and Energy Estimation

We estimate LLBP’s latency and energy consumption using
CACTI 7.0 [6] with a 22nm technology, comparing it to a
64K TSL and an unrealistic but equally sized 512K TSL. We
model the CD as 7-way associative, PB as 4-way associative,

5We note that a such low opportunity for perfect branch prediction is
inconsistent with prior work [25] (12.4% speedup for ideal branch prediction)
and our TopDown study on real hardware (Figure 1) where 9.3% of the
execution cycles are lost due to misspeculation. We attribute this inconsistency
to ChampSim’s limited core model and leave detailed performance evaluations
of LLBP for future work.

Component Relative
Access Latency

Cycles Relative
Access Energy

64KiB TSL 1 2 1
512KiB TSL 2.55 4 4.58
LLBP 2.68 4 4.44
CD 0.8 1 0.3
PB (64-enties) 0.62 1 0.25

TABLE III: Access latency and energy of LLBP structures
relative to 64K TSL at 4Ghz.

0.0 1.0 2.0 3.0 4.0 5.0
Relative Energy

512KiB TAGE
16-Entry PB
64-Entry PB

256-Entry PB TAGE-SC-L
CD

PB
LLBP

Fig. 12: Energy consumption of different designs relative to
the 64K TSL

and LLBP as a direct-mapped cache. We use an access width
of 8b for CD accesses and 36 bytes for PB and LLBP accesses.
TAGE is modeled as a direct-mapped cache, reading 42 bytes
per access (21 tables * (12b tag + 3b counter + 1b useful bit)).
We only model pattern tables, assuming other structures (e.g.,
statistical corrector) remain constant. Note that this estimation
does not include energy savings due to increased prediction
accuracy or the wire energy for moving pattern sets between
PB and LLBP. We use a 0.25ns cycle time (4GHz clock).
Results are presented in Table III.

Latency: The middle column in Table III shows that
increasing TAGE’s pattern tables by 8x doubles the access
latency from 2 to 4 cycles. LLBP lookup also requires 4 cycles.
CD and PB access latencies are below 64K TSL’s, fitting
within a single cycle. Based on these values, we configure
LLBP’s simulator model with a 6-cycle prefetch delay for the
sequential accesses of the CD and LLBP, plus one cycle for
additional logic delay.

Energy: The last column of Table III shows access energy
relative to 64K TSL. An 8x increase in 64K TSL size
(to 512KB) raises energy consumption by 4.58x per access,
roughly the same as fetching a pattern set from LLBP (4.45x
increase). A CD and PB access consumes 31% and 25% of
64K TSL access energy, respectively.

While the energy per access to LLBP is relatively high, it is
not incurred every cycle. Only the PB (0.4% of overall LLBP
capacity) is accessed every cycle, as is the baseline TAGE.
The CD is searched only when the context ID changes (upon
executing an unconditional branch), which we found is, on
average, once every 6.3 cycles. Similarly, LLBP is accessed
to fetch new pattern sets only when they are not cached in the
PB. We observe a LLBP access happens on average every 7.7
cycles for a PB size of 64 pattern sets.

Figure 12 plots the relative energy when access frequencies
are taken into account. The figure considers LLBP with various
PB sizes as well as a 512KB TSL; results are normalized to
the energy consumption of 64K TSL. All LLBP structures
combined consume 51-57% of 64K TSL’s energy. The optimal
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Fig. 14: Sensitivity of branch MPKI reduction and LLBP
capacity on the number of pattern sets and pattern set size.

point for LLBP is with a 64-entry PB; with a larger PB,
its energy consumption outweighs savings from fewer LLBP
accesses. The CD consumes only 10% of all LLBP structures’
energy. While LLBP with a 64-entry PB increases the energy
consumption by 1.53x over 64K TSL, a 512K TSL increases
the energy consumption by over 4.5x.

E. Program Context Sensitivity

LLBP uses global context information to group patterns in
sets. We evaluate the effectiveness of three different branch
types in forming the CID: (1) all unconditional branches
(Uncond) – as advocated in this paper, (2) only calls and
returns (Call/Ret), and (3) all branches (All).

Figure 13 shows that with no prefetch distance, all history
types perform relatively poorly within 3.5-4.8% MPKI reduc-
tion. The reason is that without some prefetch distance, the
LLBP is unable to provide a prediction in time.

Ignoring a few of the most recent branches to add prefetch
distance affects accuracy differently. Using the Uncond or
Call/Ret history increases accuracy, as both can effectively
capture the global control flow with few branches and predict
upcoming contexts. Uncond history (20% of all branches)
performs best with D = 4, resulting in a maximum MPKI
reduction of 8.9%. Call/Ret history (14% of all branches) is
too coarse and, as a result, less effective at capturing global
control flow.

For the All history, it’s the opposite; increasing D increases
mispredictions. The reason is that adding conditional branches
adds too much noise to capture the global control flow.

0 2 4 6 8 10 12 14
Conditional Branch Predictions [%]

No Override Both Correct
Both Wrong

Good Override
Bad Override

Fig. 15: Average breakdown of LLBP predictions. LLBP pro-
vides for 14.8% of the dynamic conditional branch executions
a prediction.

F. Evaluating Pattern Sets

We next study the sensitivity of the LLBP to the number
of pattern sets and the pattern set size (patterns per pattern
set) on branch misprediction reduction and the LLBP storage
consumption. For this study, we use the LLBP-0Lat model,
a fully associative context index (CI), and no pattern buck-
eting as described in Section V-D to avoid any bias from
associativity and prefetching. We also use a 31-bit context
tag (instead of 14 bits) to enable more than 16K contexts. We
measure the reduction in branch mispredictions compared to
the 64K TSL baseline across a range of 8K to 128K pattern
sets and four different pattern set sizes, 8, 16, 32, and 64. The
LLBP capacity is calculated for each configuration using the
empirically determined parameters presented in Section VI.

Figure 14 presents the average MPKI reduction across all
14 benchmarks and the corresponding LLBP capacity.

We observe that with 16K contexts and a pattern set size of
8 patterns, LLBP achieves an 11% MPKI reduction. Doubling
the pattern set to 16 results in an additional 2.6% MPKI
reduction. However, further increases in pattern set size yield
diminishing returns: a pattern set size of 32 gains only 1.4%
further reduction, while 64 provides less than 0.1% additional
improvement.

Varying the number of contexts exhibits different behavior.
With 16 patterns per context, MPKI reduction scales almost
linearly from 8K contexts (10.3% MPKI reduction) to 14K
contexts (13.2% MPKI reduction). Beyond this point, the
MPKI reduces further, albeit at a slower rate. These results
demonstrate that LLBP’s context-based organization effec-
tively distributes the highly skewed branch predictor working
set across numerous contexts. Consequently, the MPKI reduc-
tion is primarily a function of the storage capacity.

We found that using 16 patterns per set and 14K pattern
sets a local optimum around 512 KiB total LLBP capacity
and correspondingly used to configure LLBP.

G. LLBP Effectiveness

We evaluate LLBP’s effectiveness by breaking down the
predictions made by LLBP into different categories. The first
category (No Override) is when an LLBP pattern matches,
but its history length is shorter than a TAGE pattern match.
Thus, LLBP will not override the baseline predictor. The
remaining categories are predictions where LLBP matches on
a pattern with the same or longer history length and overrides
the baseline predictor. We classify these as Good Override
when the baseline predictor would have mispredicted, and Bad
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Override when the baseline predictor would have been correct,
but LLBP is wrong. The final categories are predictions
where LLBP overrides the baseline, but both predict the same
outcome, either Both Correct or Both Wrong.

The mean breakdown over all benchmarks is presented in
Figure 15. First, we observe that LLBP provides a prediction
for only 14.8% of all dynamic conditional branch executions.
This is expected as most branches are easy to predict for
the baseline predictor, and LLBP targets branches needing
a large storage capacity. In fact, 49% of all predictions are
made by the simple bimodal prediction. Once LLBP provides
a prediction, it overrides the primary predictor in 77% of the
cases. The LLBP overrides are mostly accurate, with only
6.8% being incorrect. One reason for LLBP’s high accuracy
is that LLBP patterns are only valid within a specific context,
which reduces destructive aliasing effects. However, in 59%
of the cases, the overrides were redundant as the baseline
prediction would have been the same.

While these results show that LLBP predictions are ex-
tremely accurate, they also reveal an opportunity for future
work to improve LLBP’s storage efficiency.

VIII. RELATED WORK

Hardware techniques: Jiménez D. [21] highlighted the issue
of long access latencies associated with large predictor struc-
tures and proposed to use old global history to pre-select pre-
diction counters from a larger predictor table and move them
into a small-and-fast table. The work applies its technique
to a simple gshare predictor, which uses only one prediction
table and fixed history length. In contrast, LLBP uses program
context information to prefetch TAGE metadata for multiple
patterns with a single look-up and matches patterns on multiple
lengths of history to make predictions. Moreover, while [21]
pipelines accesses to the large table, accessing it on every
single cycle, our design is accessed at most once per program
context switch.

Seznec et al. [44], [45] proposed ahead-pipeline predictors
and showed that starting the prediction pipeline early with
an incomplete history, pre-computing multiple predictions in
parallel and arbitrating the final prediction based on final
histories bits can overcome the predictor latency with only a
small impact on accuracy. LLBP uses a similar idea to prefetch
pattern sets based on a partial history into the PB. However,
with ahead-pipelining, the entire branch predictor must be
accessed on every cycle. In contrast, LLBP is accessed only
if a pattern set exists in the CD, dramatically reducing energy
consumption as shown in our evaluation in Section VII-D.

Vougioukas et al. [51] tackled the problem of cold branch
predictor state due to context switches. The work proposed a
small perceptron predictor as base predictor of TAGE, which
can be swapped out on a context switch to dedicated storage
and subsequently restored when the process is resumed. Schall
et al. [36] also address cold branch predictor state for server-
less functions and propose a record-and-replay mechanism to
restore BTB and the bimodal predictor. In contrast, LLBP

addresses the problem of large branch working sets for long-
running workloads.

Kumar et al. [26] observed that program control flow
has global (notionally, across functions) and local (within
functions) aspects, and used this observation to optimize BTB
design. LLBP also leverages the dichotomy between global
and local control flow, but in a different way and for a different
purpose – namely, designing a branch prediction hierarchy.

Software techniques: Recent work called Whisper has fo-
cused on the branch prediction problem in the context of server
workloads, observing that capacity constraints of TAGE-SC-
L stand in the way of higher prediction accuracy [25]. In
response, the work proposed a cross-layer approach for en-
hancing the accuracy of branch prediction that combines off-
line application profiling and analysis, ISA extensions, and
specialized circuits for prediction. The approach is highly
invasive given the required cross-layer support, and is also
reliant on having a representative profile to be effective. Our
work attacks the same problem as Whisper and corroborates
their findings regarding branch predictor capacity constraints
under modern server workloads. However, LLBP is a purely
microarhcitectural approach that requires no profiling and no
ISA support.

Other techniques have focused specifically on hard-to-
predict branches using ML-based methods [50], [56]. These
techniques also necessitate offline profiling, architectural ex-
tensions and OS support, rendering them more challenging
to adopt as compared to pure microarchitectural approaches.
These techniques also do not directly help with the problem
of large branch working sets prevalent in server workloads.

IX. CONCLUSION

In modern high-performance processors, branch prediction
is essential for efficient execution, but it faces accuracy chal-
lenges particularly on server workloads, which feature large
branch working sets and complex branch behavior. On these
workloads, the state-of-the-art TAGE-SC-L predictor suffers
from high misprediction rates, wasting significant execution
cycles as a result. This work introduced the Last-Level Branch
Predictor (LLBP), which addresses the capacity challenge by
adding high-capacity storage to the TAGE predictor. A key
insight underpinning our design is to use the notion of program
context, such as a function call chain, to localize the branch
predictor state to a small number of patterns for a given
context. To hide the access latency to LLBP, our design uses a
storage-free program context predictor to anticipate upcoming
contexts and prefetch the associated branch metadata from
LLBP.
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APPENDIX

A. Abstract
This artifact provides the framework used in our work to

analyze TAGE-SC-L and design LLBP, available at https://
github.com/dhschall/LLBP. The repository contains:

1) Source code for both TAGE-SC-L and LLBP
2) Instructions for compiling the code, running experiments,

and analyzing results
3) Server traces used to evaluate LLBP
By only modeling the branch predictor — without the

complexity of the entire CPU — the framework is a fast and
easy way evaluate different branch predictor configurations
and explore the design space of LLBP. Thus, the provided
artifact is intended to empower future research and does not
aim to reproduce the exact results presented in our work.

B. Artifact check-list (meta-information)
• Compilation: C++ compiler with C++20 standard.
• Data set: Traces are available at https://zenodo.org/doi/10.

5281/zenodo.13133242. Download traces using the supplied
script.

• Metrics: Branch mispredictions (MPKI)
• Experiments: Use the provided script to evaluate branch MPKI

reduction.
• How much disk space required (approximately)?: ∼ 25GB
• How much time is needed to prepare workflow (approxi-

mately)?: ∼ 0.5 hours. Mostly to download the traces..
• How much time is needed to complete experiments (ap-

proximately)?: Each configuration takes between 15-45min to
simulate depending on the model, the benchmark, and the used
machine. Running all 56 configurations on a 32-core machine
should take less than an hour.

• Publicly available?: Yes
• Code licenses (if publicly available)?: MIT
• Workflow automation framework used?: GitHub actions are

used for continuous integration tests.
• Archived (provide DOI)?: https://zenodo.org/doi/10.5281/

zenodo.13197409

C. Description
1) How to access: The source code is publicly available on

GitHub (https://github.com/dhschall/LLBP) or Zenodo (https:
//doi.org/10.5281/zenodo.13197409).

2) Hardware dependencies: The LLBP framework can be
used on any system with a general-purpose CPU and at least
32 GiB free disk space to store the traces.

3) Software dependencies: The framework requires a C++
compiler with C++20 standard, CMake 3.22 or above, and
depends on the boost library. It is tested on Ubuntu 20.04
and 22.04 with GCC v9.4.0 and v11.4.0 and Clang v11.0 and
v14.0. For plotting the graphs matplotlib library and a Jupyter
notebook is used.

4) Data sets: The server traces used to evaluate LLBP are
available on Zenodo (https://zenodo.org/doi/10.5281/zenodo.
13133242) and can be downloaded using the supplied script.
Ten traces were collected while running server applications on
gem5 in full system mode, while four traces were obtained
from the Google Workload Traces (https://dynamorio.org/
google workload traces.html). All traces are converted into
the ChampSim [15] format.

D. Installation

To obtain the source code, install all dependencies and build
the simulator execute the following commands.

# Clone the LLBP framework from GitHub repository:
$ git clone https://github.com/dhschall/LLBP.git

# Install dependencies
$ sudo apt install -y cmake libboost-all-dev build-

essential pip parallel
$ pip install -r analysis/requirements.txt

# Compile the simulator
$ mkdir build
$ cd build
$ cmake -DCMAKE_BUILD_TYPE=Debug ..
$ cd ..
$ cmake --build ./build -j $(nproc)

E. Experiment workflow

1) Traces: The traces used to evaluate LLBP can be ob-
tained from Zenodo with:

$ ./utils/download_traces.sh

F. Simulation

To reproduce the MPKI reduction of LLBP, similar to
Figure 9, use the following command to launch the simulations
for all branch predictor models and benchmarks.

$ ./utils/eval_all.sh

G. Evaluation and expected results

The results folder should contain 56 statistic files,
with four files per benchmark. Use the Jupyter Notebook
./analysis/mpki.ipynb to parse the files and evaluate
the results. Press Run All to execute all notebook cells.
This should produce two PDFs plotting absolute MPKI and
MPKI reduction. The MPKI reduction should be similar to
the reduction reported in Figure 9 in Section VII-A. Note that
for this paper, we integrated LLBP with ChampSim to obtain
more precise timing and performance results. Therefore, the
results of the simulator are expected to differ slightly from
those presented in the paper.

H. Experiment customization

The README.md file provided with the repository contains
additional information on the code structure along with in-
structions to run individual experiments. The source code is
well-documented, with comments explaining variables, param-
eters, and methods. Most of the configuration parameters for
LLBP can be found in the LLBPConfig struct within the
llbp.h file.

I. Methodology

Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/artifact-

review-and-badging-current
• https://cTuning.org/ae
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